
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

Anonymous Authors1

Abstract

A fundamental challenge in optimal control (OC)
and machine learning is how to find the optimal
policy of an agent that operates in changing and
uncertain environments.Traditional OC methods
face challenges in scalability and adaptability due
to the curse-of-dimensionality and the reliance
on fixed prior models of the environment. Model
Predictive Control (MPC) addresses these issues
but is limited to open-loop controls, i.e., policies
without feedback to adapt. Another approach is
Reinforcement Learning (RL) which can scale
well to high-dimensional applications but is of-
ten computationally expensive and can be unreli-
able in highly stochastic continuous-time setups.
This paper presents the Deep Adaptive Regulator
(DARE) which combines deep learning with OC to
compute closed-loop adaptive policies by solving
continuously updated OC problems that explic-
itly trade off exploration with exploitation. We
show that our method effectively transfers learn-
ing to unseen environments and is suited for on-
line decision-making in environments that change
in real time. We test DARE in various setups and
demonstrate its superior performance over tradi-
tional methods, especially in scenarios with mis-
specified priors and nonstationary dynamics.

1. Introduction
This paper considers the decision-making problem of an
agent who seeks to control a system optimally while learn-
ing both (i) the system dynamics and (ii) the reward function
through interaction with the environment. Optimal control
(OC) is a ubiquitous framework to solve such problems in
both deterministic and stochastic settings. Classical OC
methods, however, generally assume known and station-
ary environments. In real-world settings such as biology

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

(Iglesias & Ingalls, 2010) and finance (Cartea et al., 2015),
agents infer dynamics from noisy and non-stationary data,
restricting the applicability of OC methods in practice.

Model predictive control (MPC) is one approach for control-
ling uncertain and non-stationary environments. In MPC,
agents optimize control inputs by solving a sequence of
open-loop optimization problems based on a predictive
model over a receding time horizon, allowing for real-time
adjustments of the agent’s policy (see Garcia et al., 1989).
One efficiently obtains open-loop policies through the Pon-
tryagin Maximum Principle, but computational bottlenecks
limit their effectiveness to systems that undergo only grad-
ual changes (see Todorov & Li, 2005). Another common
approach is Reinforcement Learning (RL), in which which
agents compute optimal policies iteratively through trial and
error (Sutton & Barto, 2018). However, most RL meth-
ods require substantial computational overhead and perform
poorly in highly stochastic and continuous-time setups or
when the environment is irregularly sampled (see Tallec
et al., 2019; Yildiz et al., 2021). Hence, flexible methods
that compute optimal closed-loop policies efficiently in un-
certain, non-stationary environments are desirable.

In this paper, we propose the Deep Adaptive Regulator
(DARE). DARE is a deep learning-based method for solv-
ing decision-making problems in continuous-time. Our
method consists of two distinct phases: offline and online.
In both phases, deep neural networks (DNNs) parameterize
the agent’s value function and policy and are optimized us-
ing Monte Carlo integration of a variational formulation of
a Hamilton–Jacobi–Bellman (HJB) equation, similar to the
Deep Galerkin Method (DGM) (Sirignano & Spiliopoulos,
2018). In contrast to DGM, we use a multi-objective loss
function similar to that in (Al-Aradi et al., 2022) which is
suitable to non-parametric models of the environment.

In the offline phase, the agent uses an initial estimate of
the environment to construct and solve an approximate OC
problem and to obtain an initial optimal policy. To accelerate
training, we propose a novel inductive bias. In particular,
we initialize the value function network around the terminal
reward function, and we initialize the policy network around
a locally optimal policy using the Iterative Linear-Quadratic
Gaussian (ILQG) method (Todorov & Li, 2005).

In the online phase, the agent updates their estimates of

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

the environment and solves a stream of updated OC prob-
lems over a receding horizon to continuously adapt their
policy, similar to MPC. In contrast to MPC, however, DARE
computes closed-loop policies. To account for the agent’s
uncertainty about the environment, we consider a modi-
fication of the agent’s objective function which explicitly
balances exploration and exploitation. The efficient transfer
of knowledge throughout the stream of updated OC prob-
lems is key to the success of DARE in the online phase. We
use the tools of regular perturbation theory to provide a
theoretical justification for the efficacy of Transfer Learning
(TL) in DARE and to show that DNN approximations of HJB
solutions are continuous with respect to their parameters.

To benchmark DARE, we study its performance in two adap-
tive OC problems: (i) a Linear-Quadratic-Gaussian (LQG)
Regulator problem where the agent learns the drift of the sys-
tem, (ii) a nonlinear MPC problem where the agent learns
a reward function modeled by a Gaussian Process (GP),
and (iii) a high-dimensional nonlinear MPC problem moti-
vated by algorithmic trading in finance (Cartea et al., 2015).
Our results show that our method significantly improves
training speeds and approximation accuracy over existing
DNN architectures in the offline phase. In the online phase,
we demonstrate that DARE outperforms continuous-time
Kalman filtering and A2C (Mnih et al., 2016) to solve the
LQG problem. In the MPC problems, we show that DARE
is robust to noise and abrupt changes of the environment,
particularly when the agent encourages exploration through
a modified objective function.

In summary, this paper:

– proposes the deep learning-based method DARE to
compute globally optimal closed-loop controls effi-
ciently in data-driven decision-making problems,

– proposes an OC problem formulation that explicitly
trades off exploration and exploitation to adapt to non-
stationary system dynamics and reward functions,

– proposes a novel inductive bias based on ILQG and
the structure of the HJB which significantly improves
convergence speed and performance of DGM,

– demonstrates experimentally that DARE transfers
knowledge efficiently to unseen environments,

– justifies theoretically the TL ability of DARE using
perturbation theory in OC.

2. Related Work
Deep Learning Methods for Control. Deep learning is
extensively used to solve HJB equations because of its flexi-
bility and scalability to high dimensions (Huré et al., 2021;
Bachouch et al., 2022; Onken et al., 2022; Kunisch & Wal-
ter, 2021). Among earlier examples, (Han et al., 2018;
Sirignano & Spiliopoulos, 2018) provide two contrasting ap-

proaches. The former proposes the Deep Galerkin Method,
which uses Monte Carlo integration to minimize a varia-
tional form of the HJB in a mesh-free manner, while the
latter proposes the Deep BSDE method, which reformulates
the PDE as a backward stochastic differential equation and
approximates the gradient of the solution with a neural net-
work. Global convergence of DGM was recently established
in (Jiang et al., 2023). There are numerous extensions to
their method, including adaptive Monte Carlo sampling in
(Aristotelous et al., 2023), augmented loss function for non-
parametric running penalties and drifts in (Al-Aradi et al.,
2022), and optimally weighted loss objectives in (van der
Meer et al., 2022).

Model Predictive Control. Classical methods in MPC are
the foundation of many online control optimization methods
in both the deterministic and stochastic settings (Allgower
et al., 2004; Mesbah, 2016). Recently, deep learning was
integrated with MPC, with applications in controlling un-
certain nonlinear systems such as unsteady fluid flow and
high-performance autonomous systems (Lenz et al., 2015;
Mishra et al., 2023; Bieker et al., 2020; Salzmann et al.,
2023; Nagabandi et al., 2018). These approaches leverage
neural networks to enhance dynamic modeling capacity and
real-world control performance.

Continuous-Time Reinforcement Learning. Methods in
deep RL are highly effective in several complex decision-
making problems (Mnih et al., 2013; Lillicrap et al., 2015;
Schulman et al., 2017). Continuous-time environments
pose significant challenges to RL methods (Tallec et al.,
2019; Yildiz et al., 2021). In particular many RL meth-
ods optimize incorrect objectives (see Jia & Zhou, 2022)
when environments are noisy, e.g., temporal difference
(TD) learning (Doya, 2000). Recently, (Wang et al., 2020)
study the exploration-exploitation trade-off in stochastic and
continuous-time RL, and prove that the optimal exploration
policy is Gaussian in a Linear-Quadratic setting. Subse-
quent work (Jia & Zhou, 2022; 2023; Hoglund et al., 2023;
Basei et al., 2022) extend RL methods to stochastic and
continuous-time environments.

3. Problem Formulation
Let Xt ∈ RdX be a stochastic system evolving continuously
in time. We consider an agent who controls X with a policy
ut ∈ Rdu over a fixed time horizon T > 0 to maximize
a terminal reward g : RdX → R. The agent’s actions ut
on the system Xt incur a penalty modelled by a function
f : RdX × Rdu → R, and their impact on the system
dynamics is modelled by a drift function h : RdX × Rdu .
The system evolves according to the dynamics

dXt = h(Xt, ut) dt+ Σ̃dWt , X0 ∈ RdX , (1)

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

where W is a dX -dimensional Brownian motion and Σ̃ ∈
RdX×dX is a covariance matrix. We assume Σ̃, T and g are
fixed and known to the agent, and p := (h, f) represents the
modelling assumptions of the agent over the environment.
We refer to p as the OC pair.

Classical OC approaches assume a fixed and known pair p
to compute an optimal policy. In practice, the agent uses an
uncertain estimate p̂ of the true environment. To account for
this uncertainty, DARE solves the decision-making problem
in two phases: offline and online. In the offline phase,
the agent solves an OC problem according to an initial
estimate of the environment p̂0. In the online phase, the
agent receives noisy samples of the true OC pair and updates
their estimate of the environment and their control policy
accordingly. The agent is uncertain of their estimate, so it
may be profitable to explore unknown domains of the system
for potentially higher rewards. Hence, a balance must be
struck between exploring new information and exploiting
existing knowledge.

Offline phase. At time t = 0, the agent assumes an ini-
tial estimate p̂0 = (ĥ0, f̂0) of the OC pair. To explicitly
account for the exploration-exploitation trade-off, the agent
seeks an optimal policy u∗ which maximizes the following
performance criterion:

J(s, x;u) = E
[
g(XT)−

∫ T

s

E
[
f̂0

]
(Xr, ur) dr (2)

+ ϕ

∫ T

s

Var
[
p̂0
]
(Xr, u(r,Xr)) dr

∣∣∣Gs] ,
for all s ∈ [0, T], where Gs is the information known to the
agent at time s, E

[
f̂0

]
denotes the mean prediction of the

estimate f̂0 and Var
[
p̂0
]

is the sum of the variance of each
each estimator in p̂0, and we assume that Xs follows the
dynamics

dXs = ĥ0(Xs, us) ds+ Σ̃dWs, X0 ∈ RdX . (3)

The objective (2) in the offline phase of DARE is a novel
adjusted formulation of the classical OC objective. Here,
the agent explicitly rewards or penalizes uncertainty on
their estimate of the environment. More precisely, When
ϕ > 0 (resp. < 0) the agent rewards (resp. penalizes)
exploration, i.e., the agent is encouraged to visit areas of
the environment with higher (resp. lower) uncertainty. We
show in Section 6.3 that the exploration parameter ϕ is key
to the performance of decision-making problems in noisy
and non-stationary environments.

To solve the problem (2), the agent defines the value function

V (s, x) = sup
u
J(s, x;u) . (4)

x T
0

V True V Term. cond.

x T
0

True u u

Figure 1. Illustration of the initialization of V θ0 , uψ0 in the offline
phase. The value function network is initialized around the termi-
nal condition g in (2), and the control policy network is initialized
around an affine approximation to the true optimal control.

We assume that the dynamic programming principle holds
for E

[
f̂0

]
and Var

[
p̂0
]
, so V solves the HJB equation:

0 = Vt +
1

2
Tr(Σ∇xxV) + sup

u∈Rdu

H(x, u,∇xV (t, x); p̂0) ,

(5)
subject to terminal condition V (T, x) = g(x) , where Σ =
Σ̃ Σ̃⊺. For ℓ ∈ RdX , the Hamiltonian H in (5) is defined as

H(x, u, p; p̂0) = ĥ0(x, u)
⊺ℓ+ E

[
f̂0

]
(x, u)

− ϕVar
[
p̂0
]
(x, u(t, x)) .

The policy u∗, which the agent implements at time t = 0,
maximizes (2) and is obtained in feedback form, i.e., as a
function of the system, for s ∈ [0, T]:

u∗(s, x; p̂0) = argmax
u∈R

H(x, u, Vx(s, x); p̂0) , (6)

where V (t, x) solves the nonlinear PDE (5).

In contrast to several approaches in RL which address the
exploration-exploitation trade-off through penalization or
reward of random control processes (see Wang et al., 2020,
in a continuous-time setup), our method learns a control
policy that is a deterministic function of the environment
and which explores domain regions in which the agent is
uncertain of their estimates of the OC pair.

Online Problem. At each time t ∈ (0, T], the agent
takes an action ut, observes a noisy sample of the true
environment p(ut, Xt) + ϵt for some i.i.d. noise {ϵt}, and
updates their estimate p̂t accordingly.1 Conditionally on
the new estimate, the policy of the offline phase is not
optimal. To adapt the optimal policy, the agent maximizes
the updated objective, for s ∈ [t, T]:

1We do not assume a particular estimation procedure, but this
can be achieved with function approximators suitable for online
learning, e.g., Gaussian Processes or Bayesian DNNs as in (Duran-
Martin et al., 2022).

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

Observe Environment

Solve PDE

Environment
Step

Current Policy Updated Policy

Observe Environment

Take Action Update Estimate

Time

Take Action Update Estimate

Figure 2. A schematic of DARE. We write k for tk to simplify
notation. At time k, the agent has value function V θk and policy
uψk . The agent observes the system Xk and environment p(Xk)+
ϵk. Next, the agent takes an action according to the policy uψk

and updates the environment estimate to p̂k+1. Between times k
and k + 1, the agent solves an updated OC problem according to
the new estimate p̂k+1, transferring knowledge (dotted line) from
V θk , uψk to compute V θk+1 , uψk+1 .

J(s, x;u) = E
[
g(XT)−

∫ T

s

E
[
f̂t

]
(Xr, ur) dr (7)

+ϕ

∫ T

s

Var
[
p̂t
]
(Xr, u(r,Xr)) dr

∣∣∣Gs] ,
and follows similar steps as those of the offline phase.

When the uncertainty Var(p̂t) is high and the agent rewards
exploration, i.e., ϕ < 0, the DARE policy focuses on im-
proving the agent’s estimate of their environment. As the
estimation accuracy increases, the contribution of the vari-
ance term in the objective decreases. Hence, the DARE
policy naturally balances the exploration-exploitation trade-
off throughout the online phase. We demonstrate the benefit
of the exploration term to overcome misspecified priors or
nonstationary environments in Section 6.

4. The Deep Adaptive Regulator
DARE offline phase. To obtain the initial policy corre-
sponding to the pair p̂0, we use NN approximations V θ and
uψ of the value function V and the optimal control u that
solve the HJB (5). We initialize V θ and uψ , for s ∈ [0, T],

as follows:{
V θ(s, x) = g(x) + Xθ(s, x),

uψ(s, x) = ûX0
(s, x) + Xψ(s, x),

(8)

where g is the terminal reward function and ûX0 is a locally
optimal linear approximation of the true optimal control. We
use the ILQG method of (Todorov & Li, 2005) to compute
ûX0

starting from X0 and we set Xθ and Xψ to be fully-
connected feedforward networks; see Figure 3.

To train V θ and uψ , we devise a multi-objective loss func-
tion which considers (i) the HJB (5), (ii) the Hamiltonian
satisfying first-order conditions, and (iii) the terminal condi-
tion. Similar to DGM, we use Monte Carlo integration to
minimize the loss function on a compact domain K ⊂ RdX .
We let ∥ · ∥ = ∥ · ∥L2([0,T]×K) and we reformulate (5) in a
variational form to define the loss:

L(θ,ψ; p̂) = LHJB + Lhamiltonian + Lterminal , (9)

where
LHJB = ∥V θt +

Σ̃2 V θ
xx

2
+H(·, uψ(·, ·), V θx (·, ·); p̂)∥ ,

Lhamiltonian = ∥∂uH(·, uψ(·, ·), V θx (·, ·); p̂)∥ ,
Lterminal = ∥V θ(T, ·)− g∥ .

(10)

The loss (9) is similar to that in (Al-Aradi et al., 2022).
However, here we use a first-order condition for the Hamil-
tonian component, which we found to improve training
performance when H is concave. Otherwise, we set

Lhamiltonian = −∥H(·, ·, uψ; p̂)∥ . (11)

We summarize the procedure in Algorithm A.

DARE online Phase. Let T = {t0, . . . , tn} ⊂ [0, T] be
a set of potentially irregularly spaced times which are un-
known to the agent at time t = 0. In the online phase,
the agent uses new estimates of the environment to update
their control policy as follows. Suppose the agent calculated
V θtk−1 (·, ·; p̂tk−1

) and uψtk−1 (·, ·; p̂tk−1
) at time tk, where

θtk−1
and ψtk−1

minimize the loss L(θ,ψ, p̂tk−1
). At time

tk, the agent (i) takes the action uψtk−1 (tk, Xtk ; p̂tk−1
) and

(ii) computes the new estimate p̂tk . Then, over the period
[tk, tk+1), the agent minimizes L(θ,ψ, p̂tk) to compute
the parameters (θtk ,ψtk). This loss minimization uses a
gradient-based method (e.g., ADAM), with

(
θtk−1

,ψtk−1

)
as a warm start for the neural networks; our method is out-
lined in Figure 3 and Algorithm A.

When the environment changes smoothly, we show in the
next section that the value function and the control policy
also change smoothly. Moreover, we show that the DNN
parameters θt and ψt change smoothly, justifying our ap-
proach.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

5. Online Deep Transfer Learning
TL encompasses methods in which knowledge acquired
from an initial source task is used to improve performance
on a related target task (see Pan & Yang, 2009; Zhuang et al.,
2020; Niu et al., 2020; Suder et al., 2023; Tan et al., 2018,
for an overview of transfer learning). One can study the
efficiency of DARE in the online phase from the perspec-
tive of TL because its performance hinges on successive
transferring of knowledge (parameters) between DNNs cor-
responding to the solutions to “similar” OC problems; see
Figure 3. In this section, we provide a theoretical justi-
fication for our method. More precisely, we analyze the
smoothness of OC problems with respect to the OC pair
describing the environment and the resulting smoothness of
DNN parameters.

To provide a theoretical foundation to this claim, we use
the tools of regular perturbation in OC and a notion of
continuity of the DARE network parameters. Later, Section
6.1 explores specific examples and quantifies empirically the
improvement achieved from TL in the online phase of DARE.
In particular, we use the number of iterations required to
attain, on average, a prespecified loss in the target task to
measure the strength of transfer.

To streamline our analysis, assume dX = du = 1 and con-
sider an agent who receives observations of the OC pair and
updates their estimate p̂t, accordingly.2 In practice, between
two sufficiently close observation times r, s ∈ [0, T] with
r < s, we assume that the estimate p̂r at time r remains
close to the estimate p̂s at time s. Hence, we write p̂s as
a perturbation of p̂r. This is formalized in the following
assumption.

Assumption 5.1. For any ϵ , there are suitable perturbation
functions pf and ph such that

f̂s = f̂r + ϵ pf and ĥr = ĥr + ϵ ph . (12)

Fix t ∈ [0, T] and consider the value and control functions
associated to p̂r and p̂s on [t, T]. That is, for ρ ∈ {r, s}, let

V ρ(t, x) = sup
u

E
[
ĝ(Xρ

T) +

∫ T

t

f̂ρ(X
ρ
τ , uτ) dτ

∣∣∣Xρ
t = x

]
,

(13)
where

dXρ
τ = ĥρ(X

ρ
τ , uτ) dτ + Σ̃dWτ .

Theorem 5.2 first shows that small perturbations in the OC
pair lead to small perturbations in the optimal policy and
the value function. Next, the result examines the continuity
of the parameters of the DNNs approximating the value and
control functions. This continuity is considered with respect
to the function space in which the functions are defined.
Intuitively, when a DNN is trained to a particular function,

2It is straightforward to generalize to multi-dimensional setups.

one expects that marginal changes to this function will result
in marginal changes to the network parameters. Providing
such a result in a general setting poses an intricate challenge.
Thus, we simplify the setting by reducing the class of DNNs
to that of single-layer perceptrons. However, our empirical
findings suggest that it generalizes to more general cases.

Theorem 5.2. Suppose that f̂r, f̂s, ĥr, ĥs, pf , ph ∈
C1,2
b ([0, T];K) and ϵ is defined as in (12).3 Moreover, as-

sume that solutions (V r, ur,⋆) and (V s, us,⋆) to (13) ex-
ist and are unique. For a value of ϵ which is sufficiently
small, then there exists L > 0 such that for any γ > 0
and single-layer perceptron approximations (V θr , uψr) and
(V θs , uψs) of (V r, ur) and (V s, us), respectively, with pre-
cision γ, such that

∥θr − θs∥+ ∥ψr −ψs∥ ≤ Lϵ2 . (14)

The proof of Theorem 5.2 is given in Appendix C. Although
the above result justifies the performance of DARE for two
consecutive policy updates with two fixed OC pairs, the re-
sults extend to the case of a dynamic estimate of the environ-
ment. That is, suppose (h, f) = (ht, ft) evolves throughout
t ∈ [0, T]. Then, if (ht, ft) changes smoothly, we expect
the DNNs parameterizing the corresponding solutions to
vary smoothly. Finally, our numerical results indicate that
DARE also adapts efficiently to large and abrupt changes in
the environment.

6. Numerical Experiments
This section investigates the performance of DARE in several
setups. We use tractable OC and MPC examples to test
our approach and to demonstrate that it produces sensible
solutions in noisy and changing environments. In particular,
we consider two classes of problems to test our method.

Linear-Quadratic-Gaussian. Consider the classical
LQG setup where a system evolves with dynamics

dXt = (b+ c ut) dt+ Σ̃dWt , X0 ∈ R, (15)

where b is a constant drift, c > 0 scales the linear impact
of an agent on the system, and Σ̃ > 0 is the variance of the
observation noise. The agent maximizes the LQ criterion

E

[
XT − αX2

T − ϕ
∫ T

0

u2t dt

]
, (16)

where ϕ > 0 scales the running quadratic penalty and α > 0
scales the terminal quadratic penalty. The running penalty
−ϕu2 is known, while the drift b is assumed unknown.

3C1,2
b ([0, T];K) denotes the set of functions defined on

[0, T]×K with continuous first derivative in t and continuous and
bounded second derivatives in x.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

0 2500 5000 7500 10000
Iterations

10−4

10−2

100

102

lo
ss

LQG problem

AIR-DGM
DGM-LSTM
DGM-MLP

0 2500 5000 7500 10000
Iterations

10−4

10−2

100

102

MPC problem

AIR-DGM
DGM-LSTM
DGM-MLP

(a) Mean and std dev of the training loss (9) from 100

training tasks of DARE, DGM-MLP, and DGM-LSTM in
the offline phase. We set b = 0 for LQG and γ = 1.3,
φ = 0 for MPC.

0 250 500 750 1000
Iterations

10−5

10−4

10−3

10−2

10−1
γ = 1.3 −→ γ = 1

DARE
DGM-LSTM
DGM-MLP

0 25 50 75 100
iterations

10−5

10−4

10−3

10−2

10−1

Lo
ss

γ = 1.3 −→ γ = 1
100 first iterations

(b) Mean and std dev of the training loss (9) from 100

training tasks of DARE, DGM-MLP, and DGM-LSTM in
the online phase. We set γ = 1, and φ = 0 for MPC.

0.00 0.25 0.50 0.75 1.00
−4

−3

−2

−1

0

1

co
nt

ro
l

0.00 0.25 0.50 0.75 1.00

−8

−6

−4

−2

0

2

4

es
tim

at
ed

dr
ift

filtering misspecified oracle DARE a2c

(c) Mean and std dev of control policy and drift esti-
mation from 100 simulated paths for filtering,
oracle, misspecified, DARE, and a2c in the
online phase of the LQG problem.

Figure 3. Training loss and performance of DARE in the experiments of Sections 6.1 and 6.2.

Table 1. Default parameter values for the LQG problem.

PARAM. b c σ ϕ α x0 T

VALUE −5 1 1 1 0.3 10 1

Model Predictive Control. Let f̂ be a predictive model
of the true nonlinear running penalty f . The system evolves
according to (15) and the agent maximizes the objective

E
[
XT − αX2

T − ϕ

∫ T

0

E[f̂](ut) dt− φ

∫ T

0

Var[f̂](ut)dt

]
.

(17)

We fix the parameters of the LQG problem (15)-(16) in
Table 1 and those of the MPC problem (15)-(17) in Table 2,
unless otherwise noted.

Table 2. Default parameters values for the MPC problem.

Param. b c σ ϕ φ α x0 T

Value 0 1 1 0.15 0.1 0.05 100 1

6.1. Training performance

Offline. To demonstrate the effectiveness of our inductive
bias (8), we compare DARE to DNN initializations of the
value function and control policy without such bias. That is,
we consider two methods, DGM-MLP and DGM-LSTM with
initializations

V θ(t, x) = Xθ(t, x) and uψ(t, x) = Xψ(t, x) ,

where Xθ and Xψ are feedforward DNNs with Xavier initial-
ization in DGM-MLP and LSTM-like networks (Sirignano
& Spiliopoulos, 2018) in DGM-LSTM.

In the MLPs of both DARE and DGM-MLP, there are 2 layers
and 20 hidden units. In DGM-LSTM, there are two hidden
LSTM-like layers between two single layer feedforward
neural networks of width 20. Figure 3(a) shows that, on
average, DARE substantially outperforms other solvers in
convergence speed in both the LQG and MPC problems.
While existing work emphasizes the importance of network

architecture for performance, our findings indicate that in-
ductive biases may hold greater importance.

Transfer Learning. We devise a TL experiment to in-
vestigate the ability of all approaches to adapt to changing
environments. We define two running penalty functions
fi = |u|1+γi for i ∈ {0, 1}, where γ0 = 1.3 and γ1 = 1.
We consider agents who use a Gaussian Process (GP) f̂ as
a predictive model for the running penalty; see Appendix
G for details on GPs. First, the agents fit two Gaussian
Process f̂i for i ∈ {0, 1} to ten noisy, random samples of
the running penalty fi. Next, we use DARE, DGM-MLP, and
DGM-LSTM to solve for solutions V θ0 , uψ0 relative to f̂0.
Once all methods have converged, we change the agents’
estimate of the running penalty to f̂1 and re-train V θ0 , uψ0

with this updated penalty function. We record the loss in the
adaptive phase in Figure 3(b).

All methods learn the new policy with comparable precision
after a few thousands iterations, and we report training per-
formance in Appendix D. However, DARE clearly transfers
knowledge to the new environment more efficiently, taking
less than 20 ADAM steps to achieve satisfactory precision.
Each iteration lasts 0.00446 seconds on average in our ex-
periments so DARE is suited for online problems with near
continuous observations in nonstationary environments.

6.2. Online Performance: Filtering

To test the performance of DARE in the online phase, we
devise an adaptive OC problem in the LOG setup. We
assume that the true drift of the system (15) is b = −5, but
the agent uses a misspecified prior b0 = 5. Throughout the
period [0, T], the agent learns b through observations of Xt.

We compare our method to classical stochastic filtering.
This approach is only suited to handle uncertainty in the
drift, so our experiment assumes known running and termi-
nal cost functions. The agent observes the state Xt of the
system 1000 times throughout the period [0, T], and we fix
model parameters as in Table 1. We compare the following
methodologies to solve the adaptive OC problem:

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

- oracle: the agent knows the true drift b. Standard re-
sults show that the optimal control is obtained analytically;
see Appendix E.
- misspecified: the agent uses a misspecified prior b0,
does not update the drift estimate, and computes the optimal
control analytically as in Appendix E.
- filtering: the agent assumes the drift is a random
variable µ drawn from a Gaussian prior N (b0,Π0) where
Π0 = 3 and uses Bayesian learning to update the parameters
of µ. We solve this problem rigorously in Appendix E. The
optimal adaptive strategy is obtained analytically in (28).
- DARE: the value and control function networks are ini-
tialized as in (8) and trained in the offline phase using the
misspecified drift b0. In the online phase, the agent observes
Xt and uses an exponential moving average with smoothing
λ = 0.95 to estimates the drift bt. After each update, we
use 10 ADAM steps to update the optimal policy, i.e., the
value and control functions V θ(t, x; bt), uψ(t, x; bt).4

- A2C: Let uψ(t, x; b) = Xψ(t, x, b). The agent uses the
drift estimation as a state variable to learn the solution to
(15). More precisely, to train the algorithm offline, we use
training data with drifts sampled from the prior distribution
N (b0,Π0), where Π0 = 3, and we use the same drift esti-
mator as that in DARE. In the online phase, the agent does
not update Xψ. See Appendix H for more details on the
A2C implementation.

Figure 3(c) shows the distribution of the control policy and
the estimated drift for 100 sample paths generated with the
true drift b. The misspecified agent is not adaptive
and the filtering agent suffers from misspecification
(b0 << b⋆ and Π0 is small). a2c learns the oracle policy
after a few iterations, however, the algorithm’s performance
degrades over time, see Appendix H for an in-depth dis-
cussion. On average, the adaptive optimal policy of DARE
adapts quickly and remains close to the oracle policy
throughout the online phase. Thus, our method is suffi-
ciently flexible and robust to misspecification.

Finally, to test robustness with respect to the true drift, we
run 100 simulations in which the value of the true drift
is drawn from a distribution b ∼ N (5, 3). We run the
different algorithms described above to solve the adaptive
OC problem for each simulated value of b. Table 3 shows
the mean and standard deviation of the performance of each
algorithm and showcases the superior performance of DARE.
It is key to note that while A2C and other RL approaches
need to train on (realistic) simulations of the environment,
DARE adapts to new environments without any pre-training.

4In our simulations, each update iteration is performed, on
average, in 0.00446 seconds; see Appendix D.

6.3. Online Performance: nonlinear MPC with GPs

Noiseless Cost Observations. Here, we test the perfor-
mance of DARE for an MPC problem using GPs to approx-
imate the nonlinear running penalty function. The true
running penalty function is u 7→ |u|1+γ∗

with γ∗ = 1 and
the agent’s prior is γ0 = 1.3. In the online phase, the
agent receives noiseless samples of the true penalty function
evaluated at the agents’ control; that is, the agent observes
|uψ(t,Xt)|1+γ

∗
. We compare the following methods:

- oracle: the agent knows the true functional form of the
running penalty |u|1+γ

∗
and solves (5) using the offline

solver of DARE to obtains the optimal policy.
- misspecified: the agent uses the prior γ0 and solves
(5) using DARE to obtain the optimal policy.
- DARE: the agent fits a GP to the prior |u|1+γ0 and uses
DARE (8) with the mean prediction of the GP to solve the of-
fline problem. In the online phase, the agent receives noise-
less observations |uψ(t,Xt)|1+γ

∗
at 300 evenly spaced

times in [0, T], and uses a fixed lookback window of 15
points to update the GP estimation.5 We set the exploration
parameter φ = 0 because the observations are noiseless. At
any time t ∈ T , the agent updates the optimal policy with
30 ADAM steps.6

We test each method on 100 sample paths of the system (15).
Figure 4(a) shows the distribution of the system Xt and the
policy ut throughout time. On average, DARE adapts the
policy from the misspecified model of the environment to
the true one quickly.

Exploration-Exploitation. We consider the case when
the agent’s observations of the running penalty in the online
problem are corrupted by noise. That is, the agent observes
|uψ(t,Xt)|1+γ

∗
+ ϵt for ϵt ∼ N (0, .02). In this setting, it

is beneficial for the agent to explore to ensure they have an
accurate model of the running penalty function. To show-
case the effect of exploration on performance, we test DARE
with different values of the exploration parameter φ. Recall
that φ > 0 penalizes exploration while φ < 0 rewards it.

We run 100 simulations and compare an agent that rewards
exploration to an agent who is indifferent to exploration.
Figure 4(b) and Table 3 show that in the presence of noise,
adding an exploration term in the objective significantly
improves the overall performance. In particular, the agent
learns the true policy faster by encouraging exploration.
Often, the absence of exploration in noisy environments
leads to local optima in the value function and control policy
network parameters, because a (wrong) mean prediction

5More precisely, the agent uses (at most) 15 points from the
set of all observations gathered throughout [0, t) for the GP prior.

6In our simulations, each update iteration is performed in
0.0024 seconds on average.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

0.0 0.2 0.4 0.6 0.8 1.0

2.0

2.2

2.4

2.6

co
nt

ro
l

misspecified oracle DARE

(a) Mean and std dev of policy for
oracle, misspecified, and DARE.

0.0 0.2 0.4 0.6 0.8 1.0
1.8

2.0

2.2

2.4

2.6

co
nt

ro
l

misspecified DARE
no exploration

DARE
exploration oracle

’
(b) Mean and std dev of policy for oracle,
misspecified, and DARE when φ = 0 (no explo-
ration), and when φ = 5 · 10−3 (exploration).

0.0 0.2 0.4 0.6 0.8 1.0
1.8

2.0

2.2

2.4

2.6

co
nt

ro
l

γ = 1.3 γ = 1 AIR-DGM jumps

(c) Mean and std dev of policy for DARE when
the true value of γ jumps between 1.3 and 1.

Figure 4. Performance of DARE in the online phase for the MPC problem.

leads to a specific policy which prevents accurate learning
of the cost function in the whole domain of controls.

Non-Stationary Environment. Finally, we consider a
simulation setup where the true form of the cost function
randomly switches between that of γ∗1 = 1.3 and γ∗2 = 1
according to a Poisson process with intensity 0.005, i.e.,
with 1.5 switches, on average, per simulation. We con-
sider an environment which starts with the cost functional
γ∗1 = 1.3, and the observations of the running penalty
|uψ(t,Xt)|1+γ

∗
+ϵt are corrupted with noise ϵt ∼ N (0, .1).

Similar to the previous experiment, the agent uses a GP to
model the running penalty.

To illustrate how DARE adapts to noisy and non-stationary
environments, we draw and fix a Poisson path and run 100
simulations for the three methods described above. Fig-
ure 4(c) shows the distribution of the control policy u and
illustrates the robustness of DARE to unpredictably chang-
ing environments. In particular, the policy followed by our
methodology is, on average, close to the optimal one. We re-
port the performance of DARE in Table 3 when the Poisson
path is not fixed throughout simulations.

Table 3. Distribution of the final performance (mean, std dev)
computed as XT − αX2

T − ϕ
∫ T
0

u2
t dt for each simulation path.

Setup Algorithm Performance

filtering oracle (−4.07, 6.55)

DARE (−4.16, 6.44)
a2c (−4.20, 6.21)
misspecified (−5.95,5.60)
filtering (−9.81, 5.78)

zero-noise oracle (−8.82, 0.94)

misspecified (−8.83, 0.94)
DARE (−8.91,0.94)

noise oracle (−8.83, 0.93)

misspecified (−8.91, 0.93)
DARE (no explor.) (−8.86, 0.93)
DARE (explor.) (−8.83,0.92)

6.4. High-Dimensional Control

In recent years, regulators have urged financial institutions
to manage the risk of their trading activity within very large
portfolios called central risk books. The aggregated trading
activity of large institutions is often conducted at very high
frequency and can be modeled as an OC problem. The
controlled system is described by the agent’s inventoryQt ∈
Rd, the asset prices St ∈ Rd, and running wealth Xt ∈ R,
with dynamics:

dQt = ut dt , dSt = Σ̃dWt , dXt = −u⊺t St dt−f(ut) dt ,

where ut ∈ Rd denotes the trader’s speed of trading. The
agent incurs transaction costs according to some unknown
function of the trading speed f(ut) ∈ Rd, and maximizes
the exponential utility of their terminal wealth for some
estimate f̂ of the true transaction costs (See Appendix F for
a detailed motivation for this problem):

sup
v

E
[
− exp (−γ (XT +Q⊺

T ST −Q⊺
T ΓQT))

]
,

The left panel of Figure 5 shows the training performance
of the three methods DARE, DGM-LSTM, and DGM-MLP in
the offline phase, when f corresponds to f : u 7→ uγ⊺ η uγ

where γ = 1.3. The last two panels of Figure 5 show the
transfer strength when the exponent changes to γ = 1 and
the agent must adapt their optimal policy. The results show-
case the superior performance of DARE in the offline and
online phases.

Impact Statement
This paper presents a novel deep learning methodology
for solving decision-making problems in noisy and non-
stationary environments, with wide-ranging applications in
finance, robotics, and biology. Our contribution is a highly
accurate and efficient method for solving model predic-
tive control problems. Possible implications include more
efficient and effective risk management in finance, safer
robot-human interaction, and improved biomedical engi-
neering. We use tractable examples to test our approach and
to demonstrate that our model produces reasonable policies.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

0 50000
Iterations

10−1

101

103

Lo
ss

offline phase

0 1000
Iterations

10−1

100

101

transfer
γ = 1.3 −→ 1

0 100
Iterations

10−1

100

101

100 first
iterations

DARE DGM-LSTM DGM-MLP

Figure 5. Training loss (9) of DARE, DGM-MLP, and DGM-LSTM,
in the offline and online phase averaged through 100 training tasks
for a 10−dimensional trading problem. Model parameters are
Γ = 10−2 I10, η = 10−1 I10, γ = 10−2, and Σ is a random
positive semi-definite matrix.

Before implementing our model for critical problems, we
believe further specific experimentation and validation is
necessary.

References
Al-Aradi, A., Correia, A., Jardim, G., de Freitas Naiff,

D., and Saporito, Y. Extensions of the deep galerkin
method. Applied Mathematics and Computation, 430:
127287, 2022.

Allgower, F., Findeisen, R., Nagy, Z. K., et al. Nonlinear
model predictive control: From theory to application.
Journal-Chinese Institute Of Chemical Engineers, 35(3):
299–316, 2004.

Aristotelous, A. C., Mitchell, E. C., and Maroulas, V.
Adlgm: An efficient adaptive sampling deep learning
galerkin method. Journal of Computational Physics, 477:
111944, 2023.

Bachouch, A., Huré, C., Langrené, N., and Pham, H. Deep
neural networks algorithms for stochastic control prob-
lems on finite horizon: numerical applications. Method-
ology and Computing in Applied Probability, 24(1):143–
178, 2022.

Basei, M., Guo, X., Hu, A., and Zhang, Y. Logarithmic
regret for episodic continuous-time linear-quadratic rein-
forcement learning over a finite-time horizon. The Jour-
nal of Machine Learning Research, 23(1):8015–8048,
2022.

Bensoussan, A. Perturbation methods in optimal control.
(No Title), 1988.

Bieker, K., Peitz, S., Brunton, S. L., Kutz, J. N., and Dell-
nitz, M. Deep model predictive flow control with limited
sensor data and online learning. Theoretical and compu-
tational fluid dynamics, 34:577–591, 2020.

Cartea, Á., Jaimungal, S., and Penalva, J. Algorithmic
and high-frequency trading. Cambridge University Press,
2015.

Doya, K. Reinforcement learning in continuous time and
space. Neural computation, 12(1):219–245, 2000.

Drissi, F. Solvability of differential riccati equations and
applications to algorithmic trading with signals. Applied
Mathematical Finance, 29(6):457–493, 2022. doi: 10.
1080/1350486X.2023.2241130. URL https://doi.
org/10.1080/1350486X.2023.2241130.

Duran-Martin, G., Kara, A., and Murphy, K. Efficient online
bayesian inference for neural bandits. In International
Conference on Artificial Intelligence and Statistics, pp.
6002–6021. PMLR, 2022.

Garcia, C. E., Prett, D. M., and Morari, M. Model predictive
control: Theory and practice—a survey. Automatica, 25
(3):335–348, 1989.

Han, J., Jentzen, A., and E, W. Solving high-dimensional
partial differential equations using deep learning. Pro-
ceedings of the National Academy of Sciences, 115(34):
8505–8510, 2018.

Hoglund, M., Ferrucci, E., Hernandez, C., Gonzalez, A. M.,
Salvi, C., Sanchez-Betancourt, L., and Zhang, Y. A neural
rde approach for continuous-time non-markovian stochas-
tic control problems, 2023.

Huré, C., Pham, H., Bachouch, A., and Langrené, N. Deep
neural networks algorithms for stochastic control prob-
lems on finite horizon: convergence analysis. SIAM Jour-
nal on Numerical Analysis, 59(1):525–557, 2021.

Iglesias, P. A. and Ingalls, B. P. Control theory and systems
biology. MIT press, 2010.

Jia, Y. and Zhou, X. Y. Policy gradient and actor-critic
learning in continuous time and space: Theory and algo-
rithms. The Journal of Machine Learning Research, 23
(1):12603–12652, 2022.

Jia, Y. and Zhou, X. Y. q-learning in continuous time. Jour-
nal of Machine Learning Research, 24(161):1–61, 2023.

Jiang, D., Sirignano, J., and Cohen, S. N. Global
convergence of deep galerkin and pinns methods for
solving partial differential equations. arXiv preprint
arXiv:2305.06000, 2023.

Kunisch, K. and Walter, D. Semiglobal optimal feedback
stabilization of autonomous systems via deep neural net-
work approximation. ESAIM: Control, Optimisation and
Calculus of Variations, 27:16, 2021.

9

https://doi.org/10.1080/1350486X.2023.2241130
https://doi.org/10.1080/1350486X.2023.2241130

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

Lenz, I., Knepper, R. A., and Saxena, A. Deepmpc: Learn-
ing deep latent features for model predictive control. In
Robotics: Science and Systems, volume 10, pp. 25. Rome,
Italy, 2015.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Mesbah, A. Stochastic model predictive control: An
overview and perspectives for future research. IEEE
Control Systems Magazine, 36(6):30–44, 2016.

Mhaskar, H. N. Neural networks for optimal approximation
of smooth and analytic functions. Neural computation, 8
(1):164–177, 1996.

Mishra, P. K., Gasparino, M. V., Velasquez, A. E. B., and
Chowdhary, G. Deep model predictive control, 2023.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937. PMLR, 2016.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S.
Neural network dynamics for model-based deep rein-
forcement learning with model-free fine-tuning. In 2018
IEEE international conference on robotics and automa-
tion (ICRA), pp. 7559–7566. IEEE, 2018.

Niu, S., Liu, Y., Wang, J., and Song, H. A decade survey
of transfer learning (2010–2020). IEEE Transactions on
Artificial Intelligence, 1(2):151–166, 2020.

Onken, D., Nurbekyan, L., Li, X., Fung, S. W., Osher,
S., and Ruthotto, L. A neural network approach for
high-dimensional optimal control applied to multiagent
path finding. IEEE Transactions on Control Systems
Technology, 31(1):235–251, 2022.

Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):
1345–1359, 2009.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http:
//jmlr.org/papers/v22/20-1364.html.

Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone,
M., Scaramuzza, D., and Ryll, M. Real-time neural
MPC: Deep learning model predictive control for quadro-
tors and agile robotic platforms. IEEE Robotics and
Automation Letters, 8(4):2397–2404, apr 2023. doi:
10.1109/lra.2023.3246839. URL https://doi.org/
10.1109%2Flra.2023.3246839.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sirignano, J. and Spiliopoulos, K. Dgm: A deep learning al-
gorithm for solving partial differential equations. Journal
of computational physics, 375:1339–1364, 2018.

Suder, P. M., Xu, J., and Dunson, D. B. Bayesian transfer
learning. arXiv preprint arXiv:2312.13484, 2023.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tallec, C., Blier, L., and Ollivier, Y. Making deep q-
learning methods robust to time discretization. In Interna-
tional Conference on Machine Learning, pp. 6096–6104.
PMLR, 2019.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C.
A survey on deep transfer learning. In Artificial Neural
Networks and Machine Learning–ICANN 2018: 27th
International Conference on Artificial Neural Networks,
Rhodes, Greece, October 4-7, 2018, Proceedings, Part III
27, pp. 270–279. Springer, 2018.

Todorov, E. and Li, W. A generalized iterative lqg method
for locally-optimal feedback control of constrained non-
linear stochastic systems. In Proceedings of the 2005,
American Control Conference, 2005., pp. 300–306. IEEE,
2005.

van der Meer, R., Oosterlee, C. W., and Borovykh, A. Op-
timally weighted loss functions for solving pdes with
neural networks. Journal of Computational and Applied
Mathematics, 405:113887, 2022.

Wang, H., Zariphopoulou, T., and Zhou, X. Y. Reinforce-
ment learning in continuous time and space: A stochastic
control approach. The Journal of Machine Learning Re-
search, 21(1):8145–8178, 2020.

Yildiz, C., Heinonen, M., and Lähdesmäki, H. Continuous-
time model-based reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 12009–
12018. PMLR, 2021.

Yong, J. and Zhou, X. Y. Stochastic controls: Hamiltonian
systems and HJB equations, volume 43. Springer Science
& Business Media, 1999.

10

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1109%2Flra.2023.3246839
https://doi.org/10.1109%2Flra.2023.3246839

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong,
H., and He, Q. A comprehensive survey on transfer
learning. Proceedings of the IEEE, 109(1):43–76, 2020.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

A. Algorithms

Algorithm 1 : DARE - Offline Phase
Inputs:

• Initial OC pair p̂0 = (ĥ0, f̂0)
• Weights θ0, ψ0

• Area of integration K ⊂ R
• Number of training iterations N ∈ N
• Initial state X0

ûX0
← ILQG(X0, p̂0)

V θ0 ← ĝ0 + Xθ0

uψ0 ← ûX0
+ Xψ0

for n = 1, ..., N do
D ← Batch of uniform samples of [0, T)×K
ℓ← 1

|D|
∑

(t,x)∈D L(t, x, V θ0 , uψ0 , p̂0)

θn, ψn ← ADAM(θn−1, ψn−1, loss = ℓ)

end for

Algorithm 2 : DARE - Online Phase
Input:

• OC pair p̂0 = (ĥ0, f̂0)
• Initial weights θ, ψ
• Area of integration K ⊂ R
• Number of ADAM updates in offline stepNoff ∈ N
• Number of ADAM updates per online stepNon ∈ N
• Time discretization T ⊂ (0, T]
• Initial State X0

V θ0 , uψ0 ← DARE(p̂0, θ, ψ,K,Noff , X0)
tprev ← 0
p̂prev ← p̂0
for t ∈ T do
Xt ← System(t,Xtprev , u

ψtprev (t,Xtprev))

p̂t ← Approx(p̂prev, p̂prev(Xt, u
ψ
tprev (t,Xt)) + ϵ)

V θt , uψt ← DARE(p̂t, θtprev , ψtprev , t, Non)

tprev ← t
end for

B. ILQG
We provide a brief overview of the ILQG method from (Todorov & Li, 2005) that we use to initialize the control policy. Let
the system Xt evolve as:

dXt = h(Xt, ut)dt+Σ(Xt, ut)dWt

and let the performance criterion be

J(t, x;u) = E

[
g(XT) +

∫ T

t

f(τ,Xτ , uτ)dτ

]
.

In this section, we assume that the agent seeks to minimize J(t, x;u). Let ut be a random open-loop control policy, and
consider

dXt = f(Xt, ut) .

Next, we linearize the original system around Xt, ut and discretize time k = {0, . . . ,K} with ∆t = T
K−1 and tk = kδt.

Define the discrepancies δXt = Xt −Xt, δut = ut − ut, which evolve (approximately) as

δXk+1 = AkδXk +Bkδuk + Ck(δuk)ξk
Ck = c1,k + C1,kδuk + · · ·+ Cd,du

costk = qk + δX⊺
kqk +

1

2
δX⊺

kQkδXk

+ δu⊺krk +
1

2
δu⊺kRkδuk + δu⊺kPkδXk ,

where δX0 = 0, ξk ∼ N(0, IdX),

Ak = IdX +∆t hx qk = ∆t fx

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

Bk = ∆t hu Qk = ∆t fxx

ci,k =
√
∆tΣi rk = ∆t fu

Ci,k =
√
∆tΣiu Rk = ∆t fuu

qk = ∆t f Pk = ∆t fux ,

and qK = g, qK = gx, and QK = gxx.

Above, all functions are evaluated at Xk, uk, and Σi denotes the i-th row of Σ. It is shown in (Todorov & Li, 2005) that the
optimal control to the linearized system δu∗ is affine, with

δu∗(δX) = lk + Lk δX . (18)

When δu takes the form (18), the value function is quadratic and we write

Vk(δX) = sk + δX⊺
ksk +

1

2
δX⊺

kSkδXk .

On can obtain an explicit representation of Sk, sk, sk by first defining

gk = rk +B⊺
ksk +

∑
i

C⊺
i,kSk+1ci,k

Gk = Pk +B⊺
kSk+1Ak

Hk = Rk +B⊺
KBk +

∑
i

C⊺
i,kSk+1Ci,k ,

which leads to the following equalities

Sk = Qk +A⊺
kSk+1Ak − L⊺

kHkLk + L⊺
kGk +G⊺

kLk

sk = qk +A⊺
ksk+1 + L⊺

kHklk + L⊺
kgk +G⊺

klk

sk = qk + sk+1 +
1

2

∑
i

ci,kSk+1ci,k +
1

2
l⊺kHklk + l⊺kgk ,

where SK = QK , sK = qK , sK = qK . Consequently, we obtain

lk = −H−1
k gk

Lk = −H−1
k Gk .

When f or g are not convex, H may have negative eigenvalues. This generally causes numerical issues due to the the
minimization problem being unbounded. In this case, we use the Levenberg-Marquardt method to achieve an approximate
inverse, by forcing all negative eigenvalues of H to be equal to some λ > 0.

C. Transfer Learning Neural Networks
C.1. Definitions

First, we introduce the notation used throughout the section.

Definition C.1 (Single-Layer Perceptron (SLP)). Denote di, dh, do ∈ N, σ : R→ R. A single-layer perceptron is defined
as

F :
Rdi −→ Rdo
x 7−→

∑dh
i=1(C

⊺)iϕ • (Aix+ bi)

with Ai ∈ Rdi , bi ∈ R, (C⊺)i ∈ Rdo for i ∈ {1, . . . , dh} and • denotes the component-wise application. We denote with
θ := (A, b, C) ∈ Rd the parameters of this SLP, with d = didh + dh + dodh, and Fθ is an SLP with parameter θ.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

C.2. Proof of Theorem 5.2

We split the proof of Theorem 5.2 into two results. Proposition C.2 shows that perturbations in the environment lead to
perturbations of similar scale in the value function and the optimal policy of OC problems. Next, Proposition C.3 shows that
for small perturbations of the value function and optimal policy, the parameters of the networks used to approximate these
functions are continuous.
Proposition C.2. There is a constant C such that

|V r(t, x)− V s(t, x)| ≤ C ϵ2 , (19)
|ur,⋆ − us,⋆| ≤ C ϵ . (20)

Proof First, note that the assumption of Theorem 5.2 ensure that the functional J is well defined. Observe that the OC
problem V r is a perturbation of V s but also V s is a perturbation of V r . In particular, first write

Jr(t, x, u) = E
[
ĝ(Xs

T) +

∫ T

t

f̂s(X
s
τ , uτ) dτ

∣∣∣Xs
t = x

]
(21)

Jr(t, x, u) = E
[
ĝ(Xr

T) +

∫ T

t

f̂s(X
r
τ , uτ) dτ

∣∣∣Xr
t = x

]
. (22)

Next, use Theorem 2.1 of Chapter III and Theorem 2.1 of Chapter IV in (Bensoussan, 1988) to write{
|V r(t, x)− Jr(t, x, us,⋆)| ≤ C0 ϵ

2,

|V s(t, x)− Js(t, x, ur,⋆)| ≤ C1 ϵ
2 ,

for suitable constants C0 and C1. Finally, use the asymptotic expansions (Section 2.3, Chapter III, in (Bensoussan, 1988)) to
write {

|V r(t, x)− Js(t, x, us,⋆)| ≤ L0 ϵ
2,

|V s(t, x)− Jr(t, x, ur,⋆)| ≤ L1 ϵ
2 ,

for suitable constants L0 and L1.
Proposition C.3. Let K ⊆ Rdi be compact; f ∈ C2

b (K;R). There exists δ, L > 0 such that for every f ′ : K → Rdo with
∥f − f ′∥ < δ and every γ > 0, there exists parameters θ, θ′ ∈ Rd such that

∥Fθ − f∥C2
b (K;R) ≤ γ, (23)

∥Fθ′ − f ′∥C2
b (K;R) ≤ γ, (24)

and

∥θ′ − θ∥ < L∥f − f ′∥C2
b (K;R) , (25)

where Fθ is a single-layer perceptron with ReLU activation of width dh.

Proof Without loss of generality, assume that K includes an open set around 0, i.e. there exists 0 < δ < ϵ s.t. Dδ − f ⊆
C2
b (K;R), where

Dδ :=
{
f ′ ∈ C2

b (K;R)
∣∣∣∥f − f ′∥C2

b (K;R) < δ
}
.

Fix an arbitrary γ > 0. According to (Mhaskar, 1996), Theorem 2.1, we can find a hidden dimension dh ∈ N, a matrix
A ∈ Rdh×di , a vector b ∈ Rdh , and a continuous linear functional C : C2

b (K;R)→ Rdh such that

∥f ′ − F(A,b,C(f ′))∥p ≤ γ, f ∈ Dδ.

Since for f ′ ∈ Dδ holds

F(A,b,C(f ′)) = F(A,b,C(f ′−f)) + F(A,b,C(f)),

due to linearity of C and Definition C.1, we have

∥θ′ − θ∥ = ∥C(f ′ − f)∥ ≤ L∥f − f ′∥C2
b (K;R)

where we used the fact that the operator norm ∥C∥T of a continuous operator is finite. We conclude ∥θ′ − θ∥ < ϵ and finish
the proof.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

Table 4. Run time of different algorithms in the experiments.

Section Test Algorithm Run time in seconds
per 1000 iteration

6.1 Training performance Offline LQG (Figure 3(a)) DGM-LSTM 4.26
DGM-MLP 1.95
DARE 2.24

Offline MPC (Figure 3(a)) DGM-LSTM 6.02
DGM-MLP 2.28
DARE 2.34

Transfer Learning (Figure 3(b)) DGM-LSTM 7.84
DGM-MLP 3.90
DARE 4.46

6.2 Filtering Online phase (Figure 3) DARE 7.47

6.3 MPC No noise (Figure 4(a)) DARE 2.40
Noise (Figure 4(b)) DARE 2.46
Non-stationary (Figure 4(c)) DARE 2.52

6.4 High-dimensional Offline phase (Figure 5) DGM-LSTM 6.01
DGM-MLP 2.41
DARE 4.01

Online phase (Figure 5) DGM-LSTM 6.64
DGM-MLP 3.26
DARE 3.92

D. Performance
We report training performance of all the methods tested in Section 6 in Table 4. All tests have been conducted on a standard
MacBook Pro M1. We make our code public in the following (anonymized) repo: https://anonymous.4open.
science/r/dare-7136/README.md

E. Filtering mathematics
E.1. Perfect knowledge of the drift

This section solves the OC problem (16) when the agent fixed the value of the drift and does not update their belief
throughout the time window.

When the drift is known and fixed, the OC problem (16) can be solved with standard methods (Yong & Zhou, 1999), and is

u⋆ =
c

2ϕ
(2A (t) x+B (t) + 1) , (26)

where A and B solve the ODE system {
−A′

(t) = cA(t)2

2ϕ

−B′
(t) = 2µA (t) + c2 A(t) (B(t)+1)

ϕ .
(27)

E.2. Bayesian filtering of the Gaussian drift

This section solves the OC problem when the agent uses a Gaussian prior to continuously update their estimation of the drift
throughout the time window of the OC problem.

Consider the control problem in (16). When the agent uses a Gaussian prior N (bt,Π0) for µ then it can be shown that the
dynamics of x can be written

dxt = βt dt+ c ut dt+ σ dŴt

15

https://anonymous.4open.science/r/dare-7136/README.md
https://anonymous.4open.science/r/dare-7136/README.md

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

in a different filtration in which Ŵ is a Gaussian process. βt = E [µ|Ft] is the best estimate of µ at time t and can be
obtained analytically as

βt = −
Π (t)

σ

(
x0 −

σ b0
Π0
− xt + qt

)
where Π(t) =

(
Π−1

0 + t
σ

)−1
and qt =

∫ t
0
c ut dt .

Using the learning dynamics above to solve the control problem (see (Drissi, 2022) for details) gives the optimal control ũ⋆

given by

ũ⋆ =
c

2ϕ
(2A (t) +B (t)) x+ (2C (t) +B (t)) q (28)

+ (1 +D (t) + E (t)) , (29)

where A,B,C solve the Riccati equation in

P (t) =

(
A (t) 1

2B (t)
1
2B (t)

⊺
C (t)

)
0 = P ′ (t) + Y (t)

⊺
P (t) + P (t) Y (t) + P (t) U P (t) ,

Y (t) =

(
Π(t)
σ

Π(t)
σ

0 0

)
, U =

(
c2

ϕ
c2

ϕ
c2

ϕ
c2

ϕ

)
,

P (T) =

(
−α 0
0 0

)
,

and D and E solve the ODE system
0 = D

′
(t) + 2ΠΠ (t) A (t)−Π (t) (1 +D (t))

+ c2

4ϕ (2A (t) +B (t))
2

0 = E
′
(t) +ΠΠ⊺B (t) +Π⊺ (1 +D (t))

+ c2

4ϕ (2C (t) +B (t))
2
,

with terminal conditions D(T) = E(T) = 0 .

F. Algorithmic trading in high dimension
We motivate the multidimensional setup in our experiments of Section 6.4. Consider the case of the trading desk of a large
bank that must execute a number d ∈ N∗ of large transactions in d correlated financial assets throughout a trading window
[0, T]. The trading desk must minimize their trading costs while minimizing the risk of their positions. Throughout this
section, we consider a filtered probability space

(
Ω,F ,P;F = (Ft)t∈[0,T]

)
, with T > 0, satisfying the usual conditions and

supporting all the processes we introduce.

Let Q0 ∈ Rd represent the transaction sizes in every asset. The inventory of the agent is modeled by (Qt)t∈[0,T] =(
Q1
t , . . . , Q

d
t

)⊺
t∈[0,T]

and it evolves with the trading speed (ut)t∈[0,T] = (u1t , . . . , u
d
t)

⊺
t∈[0,T] in each asset:7

dQt = ut dt.

The prices (St)t∈[0,T] =
(
S1
t , . . . , S

d
t

)⊺
t∈[0,T]

of the d assets are modeled as correlated Brownians with dynamics

dSt = Σ̃dWt ,

where W =
(
W 1, . . . ,W d

)
is a d-dimensional standard Brownian motion and S0 ∈ Rd is known. The matrix Σ̃ ∈Md(R)

measures the correlation of the prices and we define the covariance matrix Σ = Σ̃ Σ̃⊺ ∈ S++
d (R).8

7The superscript ⊺ is the transpose operator.
8Md(R) := Md,d(R) is the set of d× d real square matrices, Sd(R) is the set of real symmetric d× d matrices, and S++

d (R) is the
set of positive matrices.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

Trading activity of the agent generates transaction costs, driven by some function of the trading speed f(ut) so the cash
from their trading activity evolves as

dXt = −u⊺t St dt− f(ut) dt, X0 = 0.

The agent maximizes the exponential utility of their terminal wealth so their objective is

V (t, x, q, s) = sup
v

E
[
− exp

(
− γ
(
Q⊺
T ST −Q

⊺
T ΓQT (30)

−
∫ T

t

u⊺s Ss ds−
∫ T

t

f(us) ds
))]

, (31)

for values Qt = q, Xt = x, and St = s at time t.

The dynamic programming principle holds and the HJB equation associated with the problem

0 = ∂tV +
1

2
Tr
(
ΣD2

SSV
)

+ sup
u∈Rd

(−(u⊺s+ f(u))∂xV + v⊺∇qV) , (32)

with terminal condition
V (T, x, q, s) = − exp (−γ (q⊺s− q⊺Γq)) . (33)

In the experiment of Section 6.4, we solve the HJB (32)-(33) using DARE to obtain the optimal policy of the trading agent.

When all the parameters of the problem are known and fixed, i.e., the agent does not adapt to new information, the problem
described above admits an analytical solution which we use to study the performance of DARE.

To solve the problem semi-analytically, the function f must be a quadratic form, that is, there is some η ∈ S++
d (Rd×d) with

f(u) = u⊺ η u . (34)

We follow the standard steps in linear-exponential quadratic Gaussian (LEQG) control and we propose the following form
for the value function

V (t, x, q, s) =

− exp (−γ (x+ q⊺S +Q⊺A(t)q +B(t)⊺q + C(t))) ,

and straightforward calculations find that the problem reduces to solving the following ODE system
A′(t) = γ

2Σ−A(t)η
−1A(t)

B′(t) = −A(t)η−1B(t)

C ′(t) = − 1
4B(t)⊺η−1B(t),

(35)

with terminal conditions
A(T) = −Γ, B(T) = C(T) = 0. (36)

Clearly, the solutions for B and C are B = C = 0. To obtain a solution, we use the change of variables

a(t) = η−
1
2A(t)η−

1
2 ∀t ∈ [0, T] ,

so the problem reduces to the following terminal value problem{
a′(t) = Â2 − a(t)2

a(T) = −C,
(37)

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

where

Â =

√
γ

2

(
η−

1
2 Σ η−

1
2

) 1
2 ∈ S++

d (R) ,

and
C = η−

1
2Γη−

1
2 ∈ S+d (R) .

We solve (37) in the next result.

Proposition F.1. Define ξ : [0, T]→ Sd(R)

ξ (t) =− Â−1

2

(
I − e−2Â(T−t)

)
(38)

− e−Â(T−t)
(
C + Â

)−1

e−Â(T−t)

as the unique solution to the ODE system ξ
′(t) = Âξ(t) + ξ(t)Â+ Id

ξ(T) = −
(
C + Â

)−1

.
(39)

Then ∀t ∈ [0, T], ξ(t) is invertible and

a : t ∈ [0, T]→ Â+ ξ(t)−1 ∈ Sd(R)

is the unique solution of (37).

Thus, the value function, which we use as the oracle in Section 6.4 is given by

V (t, x, q, s) =

− exp (−γ (x+ q⊺S +Q⊺A(t)q +B(t)⊺q + C(t))) ,

where

A(t) = η
1
2

(
Â−

{
Â−1

2

(
I − e−2Â(T−t)

)
+ e−Â(T−t)

(
C + Â

)−1

e−Â(T−t)
}−1)

η
1
2 .

Finally, Figure F shows the true value function and the solution learned by DARE for a set of model parameters in dimension
5, and Figure 6 shows the associated training loss.

G. Gaussian Process mathematics
Formally, a GP is a random function f : X 7→ R, such that, for any finite set of points X⋆ ⊆ X , the random vector
f⋆ = {f (x)}x∈X⋆ follows a multivariate Gaussian distribution. The shape of the function f is determined by a finite
set of (training) observations y = {yi}i∈{1,...,n} collected at the (training) observation points X = {xi}i∈{1,...,n}, where
yi = f(xi) + ϵi is subject to i.i.d. Gaussian measurement noise ϵi ∼ N (0, s2) for s > 0. GPs are fully specified by a mean
function µ : X 7→ R and a covariance (kernel) function k : X × X 7→ R, In particular, if f ∼ GP(µ, k) and X⋆ is a set of
test points in the domain X of the GP, then the set of random variables f⋆ is Gaussian with parametersN (µ⋆,K⋆,⋆), where

µ⋆ = {µ(x)}x∈X⋆
and K⋆,⋆ = {k (x,x′)}(x,x′)∈X⋆

.

A convenient property of GPs is that one computes the posterior distribution with analytic formulae. Suppose we collect n
noisy observations y = {y1, . . . , yn} at the domain points X = {x1, . . . ,xn} , where yi = f(xi) + ϵi and ϵi ∼ N

(
0, s2

)
.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

0 2000 4000 6000 8000 10000
Iterations

10−3

10−2

10−1

100

Lo
ss

Lhamiltonian
Lhjb

Lterminal
L

Figure 6. Training loss (9) of DARE for the multidimensional OC problem (30). The parameter values are Γ = 10−2 × I5,

η = 10−3 ×

25.13 10.41 11.67 13.75 22.21
10.41 6.42 7.68 9.12 12.4
11.67 7.68 12.95 11.2 18.71
13.75 9.12 11.2 17.04 17.25
22.21 12.4 18.71 17.25 29.02

, and Σ =

2.83 2.02 2.53 1.91 1.59
2.02 1.96 2.04 1.28 1.31
2.53 2.04 2.85 2.04 1.32
1.91 1.28 2.04 1.76 0.96
1.59 1.31 1.32 0.96 1.06

.

Then, the posterior distribution over f given the previous (training) observations X and y, is also a GP with mean function
µpost and covariance function kpost given by

µpost (x⋆) = k (x⋆,X) (K + s2 I)−1 y ,

kpost (x⋆,x
′
⋆) = k (x⋆,x

′
⋆)

−k (x⋆,X) (K + s2 I)−1 k (X,x′
⋆) ,

(40)

where

k (x⋆,X) = k (X,x⋆)
⊺
= (k (x⋆,x1) , . . . , k (x⋆,xn))

is the n-dimensional covariance vector of the test point x⋆ with training points X = {x1, . . . ,xn}, K =
(k (xi,xj))i,j∈{1,...,n} is the positive semi-definite kernel matrix from training data, and I is the n-dimensional iden-
tity matrix. See Figure G for an example.

Let the elements of the vector θ ∈ Θ be hyper-parameters of the prior’s kernel function and s2 is the variance of the i.i.d.
Gaussian noise that corrupts reward observations. Both θ and s2 are inferred with the log marginal likelihood of the data
given by

L (θ, s) = log p(y |X,θ, s) (41)

=− 1

2
log
(
det
(
Kθ + s2 I

))
− 1

2
y⊺
(
Kθ + s2 I

)−1
y − n

2
log (2π) ,

for a zero-mean GP, where X and y are the n training samples andKθ is the prior’s positive covariance matrix with kernel
kθ. The vector of hyper-parameters θ and the variance s2 maximize the quantity (41), i.e., (θ⋆, s⋆) ∈ argmax

θ∈Θ,s∈R+

L(θ, s),

which one solves with classical gradient descent-based optimization algorithms.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

x 1

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-2.90
-2.31
-1.72
-1.12
-0.53

x 2

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-2.90
-2.31
-1.72
-1.12
-0.53

x 3

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-4.10
-3.42
-2.75
-2.07
-1.39

x 4

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-6.12
-5.30
-4.48
-3.67
-2.85

x 5

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-8.95
-7.95
-6.95
-5.95
-4.95

x 1

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-5.91
-3.00
-0.08
2.83
5.75

x 2

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-5.91
-3.00
-0.08
2.83
5.75

x 3

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-4.96
-2.76
-0.56
1.65
3.85

x 4

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-4.96
-2.76
-0.56
1.64
3.85

x 5

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-4.96
-2.76
-0.56
1.64
3.85

DARE true

Figure 7. True and approximated (with DARE) value function (30) for t ∈ [0, T] and X = X1, X2, X3, X4, X5 ∈ [−5, 5]5. Each surface
corresponds to the value function for time and one dimension in X , where the value of the system in all other dimensions is fixed to
xi = 0.

0 1 2 3

0

5

10

15

20 GP prior: γ = 1.3
GP prior: γ = 1

Figure 8. Two GPs fitted to f(u) = u1+γi for γ0 = 1.3 and γ1 = 1.

H. Reinforcement Learning Benchmarks
This section discusses the use of A2C as a benchmark for reinforcement learning in Section 6.2.

H.1. The A2C benchmark in Section 6.2

We use the implementation of A2C in (Mnih et al., 2016) from StableBaselines3 (Raffin et al., 2021). We use default
parameters except for the number of steps necessary to update the policy, which we modify to account for the high
stochasticity in the decision-making task. We found it is beneficial to process 10 episodes or more before updating. With
this, it becomes clear that the time discretization played an important role in the performance of A2C, which is supported by
the findings in (Tallec et al., 2019). For this reason, we use a standard technique for RL in continuous-time environments to
augment performance, which is that during training, we hold the actions of the A2C agent constant for n time steps. At

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

DARE: The Deep Adaptive Regulator for Closed-Loop Predictive Control

test time, the agent is allowed to act at all time steps. According to Appendix H.1, the performance of A2C only becomes
competitive when actions in training are held constant for 100 time steps, that is, the agent makes only 10 actions in Figure
3.

20 40 60 80 100
Repitition

−6.5

−6.0

−5.5

−5.0

−4.5
A2C Performances

Figure 9. A2C performances in the setting of Section 6.2 for varying action repetitions, with performance estimation error.

In the LQG example, competitive performance is achieved likely due to the true optimal control being affine, so that linear
interpolation between sparsely sampled optimal actions can lead to a decent approximation. In examples where the control
is nonlinear, a finer time discretization is likely needed to approximate the true optimal control well.

In our experimental setup of Section 6.2, we also evaluated the PPO algorithm from StableBaselines3 (Raffin et al., 2021)
as summarized in Table 5. While the algorithm demonstrated satisfactory performance, we observed several limitations
impacting its suitability for our specific task. Firstly, PPO exhibited less stability compared to other baselines, with a
noticeable sensitivity to hyperparameter configurations. This characteristic necessitated a more meticulous and often
trial-and-error approach to hyperparameter tuning, which was less efficient in our context. Additionally, we encountered
a fundamental challenge with the PPO algorithm similar to that experienced with the A2C approach, pertaining to the
breakdown of reinforcement learning strategies in continuous time environments. To mitigate this, we were compelled to
adopt a strategy of repeating actions, analogous to our approach with A2C.

Table 5. Performance of PPO in Section 6.2 for various hyper parameters.

MINI BATCH 512 256 256 100 64
STEP P. UPDATE 8192 8192 8192 1000 2048
NUM. EPOCH 100 10 100 10 10
ACT. REPIT. 100 100 10 100 10

PERF. (MEAN) −4.22 −4.68 −5.46 −4.35 −6.61
PERF. (STD DEV) 5.48 5.27 4.97 5.51 6.38

H.2. Function-valued uncertainty

In Section 6.3, our decision to exclude an RL benchmark was informed by the fact that we use a GP to model uncertainty. In
Section 6.2, uncertainty about the drift was parametric and could be incorporated as a state variable for the RL agent. Hence,
the RL agent could be trained on samples of different drifts and learn the optimal policy for all drifts in the sampled region.
In Section 6.3, the GP estimate could not be incorporated directly as a state variable for the RL agent, because the GP is a
non-parametric function approximator. Tailoring an RL algorithm to optimize over a set of non-parametric cost functions
was out of the scope of this paper.

21

