046

047

052

053

054

000

# **DARE:** The Deep Adaptive Regulator for Closed-Loop Predictive Control

Anonymous Authors<sup>1</sup>

## Abstract

A fundamental challenge in optimal control (OC) and machine learning is how to find the optimal policy of an agent that operates in changing and uncertain environments. Traditional OC methods face challenges in scalability and adaptability due to the curse-of-dimensionality and the reliance on fixed prior models of the environment. Model Predictive Control (MPC) addresses these issues but is limited to open-loop controls, i.e., policies without feedback to adapt. Another approach is Reinforcement Learning (RL) which can scale well to high-dimensional applications but is often computationally expensive and can be unreliable in highly stochastic continuous-time setups. This paper presents the Deep Adaptive Regulator (DARE) which combines deep learning with OC to compute closed-loop adaptive policies by solving continuously updated OC problems that explicitly trade off exploration with exploitation. We show that our method effectively transfers learning to unseen environments and is suited for online decision-making in environments that change in real time. We test DARE in various setups and demonstrate its superior performance over traditional methods, especially in scenarios with misspecified priors and nonstationary dynamics.

# 1. Introduction

This paper considers the decision-making problem of an agent who seeks to control a system optimally while learning both (i) the system dynamics and (ii) the reward function through interaction with the environment. Optimal control (OC) is a ubiquitous framework to solve such problems in both deterministic and stochastic settings. Classical OC methods, however, generally assume known and stationary environments. In real-world settings such as biology (Iglesias & Ingalls, 2010) and finance (Cartea et al., 2015), agents infer dynamics from noisy and non-stationary data, restricting the applicability of OC methods in practice.

Model predictive control (MPC) is one approach for controlling uncertain and non-stationary environments. In MPC, agents optimize control inputs by solving a sequence of open-loop optimization problems based on a predictive model over a receding time horizon, allowing for real-time adjustments of the agent's policy (see Garcia et al., 1989). One efficiently obtains open-loop policies through the Pontryagin Maximum Principle, but computational bottlenecks limit their effectiveness to systems that undergo only gradual changes (see Todorov & Li, 2005). Another common approach is Reinforcement Learning (RL), in which which agents compute optimal policies iteratively through trial and error (Sutton & Barto, 2018). However, most RL methods require substantial computational overhead and perform poorly in highly stochastic and continuous-time setups or when the environment is irregularly sampled (see Tallec et al., 2019; Yildiz et al., 2021). Hence, flexible methods that compute optimal closed-loop policies efficiently in uncertain, non-stationary environments are desirable.

In this paper, we propose the Deep Adaptive Regulator (DARE). DARE is a deep learning-based method for solving decision-making problems in continuous-time. Our method consists of two distinct phases: offline and online. In both phases, deep neural networks (DNNs) parameterize the agent's value function and policy and are optimized using Monte Carlo integration of a variational formulation of a Hamilton–Jacobi–Bellman (HJB) equation, similar to the Deep Galerkin Method (DGM) (Sirignano & Spiliopoulos, 2018). In contrast to DGM, we use a multi-objective loss function similar to that in (Al-Aradi et al., 2022) which is suitable to non-parametric models of the environment.

In the *offline* phase, the agent uses an initial estimate of the environment to construct and solve an approximate OC problem and to obtain an initial optimal policy. To accelerate training, we propose a novel inductive bias. In particular, we initialize the value function network around the terminal reward function, and we initialize the policy network around a locally optimal policy using the Iterative Linear-Quadratic Gaussian (ILQG) method (Todorov & Li, 2005).

In the online phase, the agent updates their estimates of

 <sup>&</sup>lt;sup>1</sup>Anonymous Institution, Anonymous City, Anonymous Region,
 Anonymous Country. Correspondence to: Anonymous Author
 <anon.email@domain.com>.</a>

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

the environment and solves a stream of updated OC problems over a receding horizon to continuously adapt their 057 policy, similar to MPC. In contrast to MPC, however, DARE 058 computes *closed-loop* policies. To account for the agent's 059 uncertainty about the environment, we consider a modi-060 fication of the agent's objective function which explicitly 061 balances exploration and exploitation. The efficient transfer 062 of knowledge throughout the stream of updated OC prob-063 lems is key to the success of DARE in the online phase. We 064 use the tools of regular perturbation theory to provide a 065 theoretical justification for the efficacy of Transfer Learning 066 (TL) in DARE and to show that DNN approximations of HJB 067 solutions are continuous with respect to their parameters.

068 To benchmark DARE, we study its performance in two adap-069 tive OC problems: (i) a Linear-Quadratic-Gaussian (LQG) 070 Regulator problem where the agent learns the drift of the system, (ii) a nonlinear MPC problem where the agent learns 072 a reward function modeled by a Gaussian Process (GP), and (iii) a high-dimensional nonlinear MPC problem moti-074 vated by algorithmic trading in finance (Cartea et al., 2015). 075 Our results show that our method significantly improves 076 training speeds and approximation accuracy over existing 077 DNN architectures in the offline phase. In the online phase, 078 we demonstrate that DARE outperforms continuous-time 079 Kalman filtering and A2C (Mnih et al., 2016) to solve the LQG problem. In the MPC problems, we show that DARE 081 is robust to noise and abrupt changes of the environment, 082 particularly when the agent encourages exploration through 083 a modified objective function.

085 In summary, this paper:

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

107

109

- proposes the deep learning-based method DARE to compute globally optimal closed-loop controls efficiently in data-driven decision-making problems,
- proposes an OC problem formulation that explicitly trades off exploration and exploitation to adapt to nonstationary system dynamics and reward functions,
- proposes a novel inductive bias based on ILQG and the structure of the HJB which significantly improves convergence speed and performance of DGM,
- demonstrates experimentally that DARE transfers knowledge efficiently to unseen environments,
- justifies theoretically the TL ability of DARE using perturbation theory in OC.

# 2. Related Work

**Deep Learning Methods for Control.** Deep learning is extensively used to solve HJB equations because of its flexi-104 bility and scalability to high dimensions (Huré et al., 2021; 105 Bachouch et al., 2022; Onken et al., 2022; Kunisch & Wal-106 ter, 2021). Among earlier examples, (Han et al., 2018; Sirignano & Spiliopoulos, 2018) provide two contrasting ap-108

proaches. The former proposes the Deep Galerkin Method, which uses Monte Carlo integration to minimize a variational form of the HJB in a mesh-free manner, while the latter proposes the Deep BSDE method, which reformulates the PDE as a backward stochastic differential equation and approximates the gradient of the solution with a neural network. Global convergence of DGM was recently established in (Jiang et al., 2023). There are numerous extensions to their method, including adaptive Monte Carlo sampling in (Aristotelous et al., 2023), augmented loss function for nonparametric running penalties and drifts in (Al-Aradi et al., 2022), and optimally weighted loss objectives in (van der Meer et al., 2022).

Model Predictive Control. Classical methods in MPC are the foundation of many online control optimization methods in both the deterministic and stochastic settings (Allgower et al., 2004; Mesbah, 2016). Recently, deep learning was integrated with MPC, with applications in controlling uncertain nonlinear systems such as unsteady fluid flow and high-performance autonomous systems (Lenz et al., 2015; Mishra et al., 2023; Bieker et al., 2020; Salzmann et al., 2023; Nagabandi et al., 2018). These approaches leverage neural networks to enhance dynamic modeling capacity and real-world control performance.

Continuous-Time Reinforcement Learning. Methods in deep RL are highly effective in several complex decisionmaking problems (Mnih et al., 2013; Lillicrap et al., 2015; Schulman et al., 2017). Continuous-time environments pose significant challenges to RL methods (Tallec et al., 2019; Yildiz et al., 2021). In particular many RL methods optimize incorrect objectives (see Jia & Zhou, 2022) when environments are noisy, e.g., temporal difference (TD) learning (Doya, 2000). Recently, (Wang et al., 2020) study the exploration-exploitation trade-off in stochastic and continuous-time RL, and prove that the optimal exploration policy is Gaussian in a Linear-Quadratic setting. Subsequent work (Jia & Zhou, 2022; 2023; Hoglund et al., 2023; Basei et al., 2022) extend RL methods to stochastic and continuous-time environments.

# **3. Problem Formulation**

Let  $X_t \in \mathbb{R}^{d_X}$  be a stochastic system evolving continuously in time. We consider an agent who controls X with a policy  $u_t \in \mathbb{R}^{d_u}$  over a fixed time horizon T > 0 to maximize a terminal reward  $g: \mathbb{R}^{d_X} \to \mathbb{R}$ . The agent's actions  $u_t$ on the system  $X_t$  incur a penalty modelled by a function  $f: \mathbb{R}^{d_X} \times \mathbb{R}^{d_u} \to \mathbb{R}$ , and their impact on the system dynamics is modelled by a drift function  $h : \mathbb{R}^{d_X} \times \mathbb{R}^{d_u}$ . The system evolves according to the dynamics

$$dX_t = h(X_t, u_t) dt + \Sigma dW_t, \quad X_0 \in \mathbb{R}^{d_X}, \quad (1)$$

110 where W is a  $d_X$ -dimensional Brownian motion and  $\tilde{\Sigma} \in \mathbb{R}^{d_X \times d_X}$  is a covariance matrix. We assume  $\tilde{\Sigma}, T$  and g are 112 fixed and known to the agent, and  $\mathfrak{p} := (h, f)$  represents the 113 modelling assumptions of the agent over the environment. 114 We refer to  $\mathfrak{p}$  as the *OC pair*.

115 Classical OC approaches assume a fixed and known pair p 116 to compute an optimal policy. In practice, the agent uses an 117 uncertain estimate  $\hat{p}$  of the true environment. To account for 118 this uncertainty, DARE solves the decision-making problem 119 in two phases: offline and online. In the offline phase, 120 the agent solves an OC problem according to an initial 121 estimate of the environment  $\hat{\mathfrak{p}}_0$ . In the online phase, the 122 agent receives noisy samples of the true OC pair and updates 123 their estimate of the environment and their control policy 124 accordingly. The agent is uncertain of their estimate, so it 125 may be profitable to explore unknown domains of the system 126 for potentially higher rewards. Hence, a balance must be struck between exploring new information and exploiting 128 existing knowledge. 129

**Offline phase.** At time t = 0, the agent assumes an initial estimate  $\hat{\mathfrak{p}}_0 = (\hat{h}_0, \hat{f}_0)$  of the OC pair. To explicitly account for the exploration-exploitation trade-off, the agent seeks an optimal policy  $u^*$  which maximizes the following performance criterion:

130

131

132

133

134

135

136

137

142

143

144

145

147

148

149

150

$$J(s, x; u) = \mathbb{E}\Big[g(X_T) - \int_s^T \mathbb{E}\left[\widehat{f}_0\right](X_r, u_r) \,\mathrm{d}r \quad (2)$$
$$+ \phi \int_s^T \operatorname{Var}\left[\widehat{\mathfrak{p}}_0\right](X_r, u(r, X_r)) \,\mathrm{d}r \,\left|\,\mathcal{G}_s\right],$$

for all  $s \in [0, T]$ , where  $\mathcal{G}_s$  is the information known to the agent at time s,  $\mathbb{E}\left[\widehat{f}_0\right]$  denotes the mean prediction of the estimate  $\widehat{f}_0$  and  $\operatorname{Var}\left[\widehat{\mathfrak{p}}_0\right]$  is the sum of the variance of each each estimator in  $\widehat{\mathfrak{p}}_0$ , and we assume that  $X_s$  follows the dynamics

$$dX_s = \hat{h}_0(X_s, u_s) \,\mathrm{d}s + \tilde{\Sigma} \,\mathrm{d}W_s, \quad X_0 \in \mathbb{R}^{d_X}.$$
(3)

The objective (2) in the offline phase of DARE is a novel 151 adjusted formulation of the classical OC objective. Here, 152 the agent explicitly rewards or penalizes uncertainty on 153 their estimate of the environment. More precisely, When 154  $\phi > 0$  (resp. < 0) the agent rewards (resp. penalizes) 155 exploration, i.e., the agent is encouraged to visit areas of 156 the environment with higher (resp. lower) uncertainty. We 157 show in Section 6.3 that the exploration parameter  $\phi$  is key 158 to the performance of decision-making problems in noisy 159 and non-stationary environments. 160

161 To solve the problem (2), the agent defines the value function 162

163 
$$V(s,x) = \sup_{u} J(s,x;u)$$
. (4)



*Figure 1.* Illustration of the initialization of  $V^{\theta_0}$ ,  $u^{\psi_0}$  in the offline phase. The value function network is initialized around the terminal condition g in (2), and the control policy network is initialized around an affine approximation to the true optimal control.

We assume that the dynamic programming principle holds for  $\mathbb{E}\left[\widehat{f}_{0}\right]$  and  $\operatorname{Var}\left[\widehat{\mathfrak{p}}_{0}\right]$ , so V solves the HJB equation:

$$0 = V_t + \frac{1}{2} \operatorname{Tr}(\Sigma \nabla_{xx} V) + \sup_{u \in \mathbb{R}^{d_u}} H(x, u, \nabla_x V(t, x); \widehat{\mathfrak{p}}_0),$$
(5)

subject to terminal condition V(T, x) = g(x), where  $\Sigma = \tilde{\Sigma} \tilde{\Sigma}^{\mathsf{T}}$ . For  $\ell \in \mathbb{R}^{d_X}$ , the Hamiltonian H in (5) is defined as

$$H(x, u, p; \widehat{\mathfrak{p}}_0) = \widehat{h}_0(x, u)^{\mathsf{T}} \ell + \mathbb{E}\left[\widehat{f}_0\right](x, u) - \phi \operatorname{Var}\left[\widehat{\mathfrak{p}}_0\right](x, u(t, x)).$$

The policy  $u^*$ , which the agent implements at time t = 0, maximizes (2) and is obtained in feedback form, i.e., as a function of the system, for  $s \in [0, T]$ :

$$u^*(s,x;\widehat{\mathfrak{p}}_0) = \arg\max_{u\in\mathbb{R}} H(x,u,V_x(s,x);\widehat{\mathfrak{p}}_0), \quad (6)$$

where V(t, x) solves the nonlinear PDE (5).

In contrast to several approaches in RL which address the exploration-exploitation trade-off through penalization or reward of *random* control processes (see Wang et al., 2020, in a continuous-time setup), our method learns a control policy that is a *deterministic* function of the environment and which explores domain regions in which the agent is uncertain of their estimates of the OC pair.

**Online Problem.** At each time  $t \in (0,T]$ , the agent takes an action  $u_t$ , observes a noisy sample of the true environment  $\mathfrak{p}(u_t, X_t) + \epsilon_t$  for some i.i.d. noise  $\{\epsilon_t\}$ , and updates their estimate  $\hat{\mathfrak{p}}_t$  accordingly.<sup>1</sup> Conditionally on the new estimate, the policy of the offline phase is not optimal. To adapt the optimal policy, the agent maximizes the updated objective, for  $s \in [t, T]$ :

<sup>&</sup>lt;sup>1</sup>We do not assume a particular estimation procedure, but this can be achieved with function approximators suitable for online learning, e.g., Gaussian Processes or Bayesian DNNs as in (Duran-Martin et al., 2022).



Figure 2. A schematic of DARE. We write k for  $t_k$  to simplify notation. At time k, the agent has value function  $V^{\theta_k}$  and policy  $u^{\psi_k}$ . The agent observes the system  $X_k$  and environment  $\mathfrak{p}(X_k) + \epsilon_k$ . Next, the agent takes an action according to the policy  $u^{\psi_k}$ and updates the environment estimate to  $\hat{\mathfrak{p}}_{k+1}$ . Between times k and k + 1, the agent solves an updated OC problem according to the new estimate  $\hat{\mathfrak{p}}_{k+1}$ , transferring knowledge (dotted line) from  $V^{\theta_k}, u^{\psi_k}$  to compute  $V^{\theta_{k+1}}, u^{\psi_{k+1}}$ .

186

187

188

189

190

191

193

196

198 199

200

202

203

204

205

206

208

209

210

211

212

213

214

215

216

217

218

219

$$J(s, x; u) = \mathbb{E}\left[g(X_T) - \int_s^T \mathbb{E}\left[\widehat{f}_t\right] (X_r, u_r) \,\mathrm{d}r \quad (7) + \phi \int_s^T \operatorname{Var}\left[\widehat{\mathfrak{p}}_t\right] (X_r, u(r, X_r)) \,\mathrm{d}r \mid \mathcal{G}_s\right],$$

and follows similar steps as those of the offline phase.

When the uncertainty  $Var(\hat{p}_t)$  is high and the agent rewards exploration, i.e.,  $\phi < 0$ , the DARE policy focuses on improving the agent's estimate of their environment. As the estimation accuracy increases, the contribution of the variance term in the objective decreases. Hence, the DARE policy naturally balances the exploration-exploitation tradeoff throughout the online phase. We demonstrate the benefit of the exploration term to overcome misspecified priors or nonstationary environments in Section 6.

### 4. The Deep Adaptive Regulator

**DARE offline phase.** To obtain the initial policy corresponding to the pair  $\hat{\mathfrak{p}}_0$ , we use NN approximations  $V^{\theta}$  and  $u^{\psi}$  of the value function V and the optimal control u that solve the HJB (5). We initialize  $V^{\theta}$  and  $u^{\psi}$ , for  $s \in [0, T]$ ,

as follows:

$$\begin{cases} V^{\boldsymbol{\theta}}(s,x) &= g(x) + \mathfrak{X}^{\boldsymbol{\theta}}(s,x), \\ u^{\boldsymbol{\psi}}(s,x) &= \widehat{u}_{X_0}(s,x) + \mathfrak{X}^{\boldsymbol{\psi}}(s,x), \end{cases}$$
(8)

where g is the terminal reward function and  $\hat{u}_{X_0}$  is a locally optimal linear approximation of the true optimal control. We use the ILQG method of (Todorov & Li, 2005) to compute  $\hat{u}_{X_0}$  starting from  $X_0$  and we set  $\mathfrak{X}^{\theta}$  and  $\mathfrak{X}^{\psi}$  to be fully-connected feedforward networks; see Figure 3.

To train  $V^{\theta}$  and  $u^{\psi}$ , we devise a multi-objective loss function which considers (i) the HJB (5), (ii) the Hamiltonian satisfying first-order conditions, and (iii) the terminal condition. Similar to DGM, we use Monte Carlo integration to minimize the loss function on a compact domain  $K \subset \mathbb{R}^{d_X}$ . We let  $\|\cdot\| = \|\cdot\|_{L^2([0,T] \times K)}$  and we reformulate (5) in a variational form to define the loss:

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\psi}; \widehat{\mathfrak{p}}) = \mathcal{L}_{\text{HJB}} + \mathcal{L}_{\text{hamiltonian}} + \mathcal{L}_{\text{terminal}}, \qquad (9)$$

where

$$\begin{cases} \mathcal{L}_{\text{HJB}} = \|V_t^{\boldsymbol{\theta}} + \frac{\hat{\Sigma}^2 V_{xx}^{\boldsymbol{\theta}}}{2} + H(\cdot, u^{\boldsymbol{\psi}}(\cdot, \cdot), V_x^{\boldsymbol{\theta}}(\cdot, \cdot); \hat{\mathfrak{p}})\|, \\ \mathcal{L}_{\text{hamiltonian}} = \|\partial_u H(\cdot, u^{\boldsymbol{\psi}}(\cdot, \cdot), V_x^{\boldsymbol{\theta}}(\cdot, \cdot); \hat{\mathfrak{p}})\|, \\ \mathcal{L}_{\text{terminal}} = \|V^{\boldsymbol{\theta}}(T, \cdot) - g\|. \end{cases}$$

$$(10)$$

The loss (9) is similar to that in (Al-Aradi et al., 2022). However, here we use a first-order condition for the Hamiltonian component, which we found to improve training performance when H is concave. Otherwise, we set

$$\mathcal{L}_{\text{hamiltonian}} = -\|H(\cdot, \cdot, u^{\psi}; \widehat{\mathfrak{p}})\|.$$
(11)

We summarize the procedure in Algorithm A.

**DARE online Phase.** Let  $\mathcal{T} = \{t_0, \ldots, t_n\} \subset [0, T]$  be a set of potentially irregularly spaced times which are unknown to the agent at time t = 0. In the online phase, the agent uses new estimates of the environment to update their control policy as follows. Suppose the agent calculated  $V^{\theta_{t_{k-1}}}(\cdot, ; \hat{p}_{t_{k-1}})$  and  $u^{\psi_{t_{k-1}}}(\cdot, ; \hat{p}_{t_{k-1}})$  at time  $t_k$ , where  $\theta_{t_{k-1}}$  and  $\psi_{t_{k-1}}$  minimize the loss  $\mathcal{L}(\theta, \psi, \hat{p}_{t_{k-1}})$ . At time  $t_k$ , the agent (i) takes the action  $u^{\psi_{t_{k-1}}}(t_k, X_{t_k}; \hat{p}_{t_{k-1}})$  and (ii) computes the new estimate  $\hat{p}_{t_k}$ . Then, over the period  $[t_k, t_{k+1})$ , the agent minimizes  $\mathcal{L}(\theta, \psi, \hat{p}_{t_k})$  to compute the parameters  $(\theta_{t_k}, \psi_{t_k})$ . This loss minimization uses a gradient-based method (e.g., ADAM), with  $(\theta_{t_{k-1}}, \psi_{t_{k-1}})$ as a warm start for the neural networks; our method is outlined in Figure 3 and Algorithm A.

When the environment changes smoothly, we show in the next section that the value function and the control policy also change smoothly. Moreover, we show that the DNN parameters  $\theta_t$  and  $\psi_t$  change smoothly, justifying our approach.

## 5. Online Deep Transfer Learning

TL encompasses methods in which knowledge acquired from an initial source task is used to improve performance on a related target task (see Pan & Yang, 2009; Zhuang et al., 2020; Niu et al., 2020; Suder et al., 2023; Tan et al., 2018, for an overview of transfer learning). One can study the efficiency of DARE in the online phase from the perspective of TL because its performance hinges on successive transferring of knowledge (parameters) between DNNs corresponding to the solutions to "similar" OC problems; see Figure 3. In this section, we provide a theoretical justification for our method. More precisely, we analyze the smoothness of OC problems with respect to the OC pair describing the environment and the resulting smoothness of DNN parameters.

To provide a theoretical foundation to this claim, we use the tools of regular perturbation in OC and a notion of continuity of the DARE network parameters. Later, Section 6.1 explores specific examples and quantifies empirically the improvement achieved from TL in the online phase of DARE. In particular, we use the number of iterations required to attain, on average, a prespecified loss in the target task to measure the *strength of transfer*.

To streamline our analysis, assume  $d_X = d_u = 1$  and consider an agent who receives observations of the OC pair and updates their estimate  $\hat{p}_t$ , accordingly.<sup>2</sup> In practice, between two sufficiently close observation times  $r, s \in [0, T]$  with r < s, we assume that the estimate  $\hat{p}_r$  at time r remains close to the estimate  $\hat{p}_s$  at time s. Hence, we write  $\hat{p}_s$  as a perturbation of  $\hat{p}_r$ . This is formalized in the following assumption.

Assumption 5.1. For any  $\epsilon$ , there are suitable perturbation functions  $p^f$  and  $p^h$  such that

$$\widehat{f}_s = \widehat{f}_r + \epsilon p^f$$
 and  $\widehat{h}_r = \widehat{h}_r + \epsilon p^h$ . (12)

Fix  $t \in [0, T]$  and consider the value and control functions associated to  $\hat{\mathfrak{p}}_r$  and  $\hat{\mathfrak{p}}_s$  on [t, T]. That is, for  $\rho \in \{r, s\}$ , let

$$V^{\rho}(t,x) = \sup_{u} \mathbb{E}\left[\widehat{g}(X_{T}^{\rho}) + \int_{t}^{T} \widehat{f}_{\rho}(X_{\tau}^{\rho}, u_{\tau}) \,\mathrm{d}\tau \,\Big|\, X_{t}^{\rho} = x\right],\tag{13}$$

where

$$\mathrm{d}X^{\rho}_{\tau} = \widehat{h}_{\rho}(X^{\rho}_{\tau}, u_{\tau})\,\mathrm{d}\tau + \widetilde{\Sigma}\,\mathrm{d}W_{\tau}\,.$$

Theorem 5.2 first shows that small perturbations in the OC pair lead to small perturbations in the optimal policy and the value function. Next, the result examines the continuity of the parameters of the DNNs approximating the value and control functions. This continuity is considered with respect to the function space in which the functions are defined. Intuitively, when a DNN is trained to a particular function,

one expects that marginal changes to this function will result in marginal changes to the network parameters. Providing such a result in a general setting poses an intricate challenge. Thus, we simplify the setting by reducing the class of DNNs to that of single-layer perceptrons. However, our empirical findings suggest that it generalizes to more general cases.

**Theorem 5.2.** Suppose that  $\hat{f}^r$ ,  $\hat{f}^s$ ,  $\hat{h}^r$ ,  $\hat{h}^s$ ,  $p^f$ ,  $p^h \in C_b^{1,2}([0,T]; K)$  and  $\epsilon$  is defined as in (12).<sup>3</sup> Moreover, assume that solutions  $(V^r, u^{r,*})$  and  $(V^s, u^{s,*})$  to (13) exist and are unique. For a value of  $\epsilon$  which is sufficiently small, then there exists L > 0 such that for any  $\gamma > 0$  and single-layer perceptron approximations  $(V^{\theta_r}, u^{\psi_r})$  and  $(V^{\theta_s}, u^{\psi_s})$  of  $(V^r, u^r)$  and  $(V^s, u^s)$ , respectively, with precision  $\gamma$ , such that

$$\|\boldsymbol{\theta}^r - \boldsymbol{\theta}^s\| + \|\boldsymbol{\psi}^r - \boldsymbol{\psi}^s\| \le L\epsilon^2.$$
(14)

The proof of Theorem 5.2 is given in Appendix C. Although the above result justifies the performance of DARE for two consecutive policy updates with two fixed OC pairs, the results extend to the case of a dynamic estimate of the environment. That is, suppose  $(h, f) = (h_t, f_t)$  evolves throughout  $t \in [0, T]$ . Then, if  $(h_t, f_t)$  changes smoothly, we expect the DNNs parameterizing the corresponding solutions to vary smoothly. Finally, our numerical results indicate that DARE also adapts efficiently to large and abrupt changes in the environment.

# 6. Numerical Experiments

This section investigates the performance of DARE in several setups. We use tractable OC and MPC examples to test our approach and to demonstrate that it produces sensible solutions in noisy and changing environments. In particular, we consider two classes of problems to test our method.

**Linear-Quadratic-Gaussian.** Consider the classical LQG setup where a system evolves with dynamics

$$dX_t = (b + c u_t) dt + \hat{\Sigma} dW_t, \quad X_0 \in \mathbb{R}, \quad (15)$$

where b is a constant drift, c > 0 scales the linear impact of an agent on the system, and  $\tilde{\Sigma} > 0$  is the variance of the observation noise. The agent maximizes the LQ criterion

$$\mathbb{E}\left[X_T - \alpha X_T^2 - \phi \int_0^T u_t^2 \,\mathrm{d}t\right],\qquad(16)$$

where  $\phi > 0$  scales the running quadratic penalty and  $\alpha > 0$  scales the terminal quadratic penalty. The running penalty  $-\phi u^2$  is known, while the drift *b* is assumed unknown.

<sup>&</sup>lt;sup>2</sup>It is straightforward to generalize to multi-dimensional setups.

 $<sup>\</sup>overline{{}^{3}C_{b}^{1,2}([0,T];K)}$  denotes the set of functions defined on  $[0,T] \times K$  with continuous first derivative in t and continuous and bounded second derivatives in x.



(a) Mean and std dev of the training loss (9) from 100 training tasks of DARE, DGM-MLP, and DGM-LSTM in training tasks of DARE, DGM-MLP, and DGM-LSTM in the offline phase. We set b = 0 for LQG and  $\gamma = 1.3$ , the online phase. We set  $\gamma = 1$ , and  $\varphi = 0$  for MPC.  $\varphi = 0$  for MPC.

284

285

286 287

289 290 291

292

293

295

296

297

298

299

300

301

302

303

304

306

307

308

309

311

312

313

314

315

316

317

318

319

320

322

323

324

325

327

328

329

(b) Mean and std dev of the training loss (9) from 100



Figure 3. Training loss and performance of DARE in the experiments of Sections 6.1 and 6.2.

Table 1. Default parameter values for the LQG problem.

| PARAM. | b  | c | $\sigma$ | $\phi$ | $\alpha$ | $x_0$ | T |
|--------|----|---|----------|--------|----------|-------|---|
| VALUE  | -5 | 1 | 1        | 1      | 0.3      | 10    | 1 |

Model Predictive Control. Let  $\hat{f}$  be a predictive model of the true nonlinear running penalty f. The system evolves according to (15) and the agent maximizes the objective

$$\mathbb{E}\left[X_T - \alpha X_T^2 - \phi \int_0^T \mathbb{E}[\widehat{f}](u_t) \,\mathrm{d}t - \varphi \int_0^T \operatorname{Var}[\widehat{f}](u_t) \,\mathrm{d}t\right].$$
(17)

We fix the parameters of the LQG problem (15)-(16) in Table 1 and those of the MPC problem (15)-(17) in Table 2, unless otherwise noted.

Table 2. Default parameters values for the MPC problem.

| Param. | b | c | $\sigma$ | $\phi$ | $\varphi$ | $\alpha$ | $x_0$ | T |
|--------|---|---|----------|--------|-----------|----------|-------|---|
| Value  | 0 | 1 | 1        | 0.15   | 0.1       | 0.05     | 100   | 1 |

#### 6.1. Training performance

**Offline.** To demonstrate the effectiveness of our inductive bias (8), we compare DARE to DNN initializations of the value function and control policy without such bias. That is, we consider two methods, DGM-MLP and DGM-LSTM with initializations

$$V^{\boldsymbol{\theta}}(t,x) = \mathfrak{X}^{\boldsymbol{\theta}}(t,x) \quad \text{ and } \quad u^{\boldsymbol{\psi}}(t,x) = \mathfrak{X}^{\boldsymbol{\psi}}(t,x) \,,$$

where  $\mathfrak{X}^{\theta}$  and  $\mathfrak{X}^{\psi}$  are feedforward DNNs with Xavier initialization in DGM-MLP and LSTM-like networks (Sirignano & Spiliopoulos, 2018) in DGM-LSTM.

In the MLPs of both DARE and DGM-MLP, there are 2 layers and 20 hidden units. In DGM-LSTM, there are two hidden LSTM-like layers between two single layer feedforward neural networks of width 20. Figure 3(a) shows that, on average, DARE substantially outperforms other solvers in convergence speed in both the LOG and MPC problems. While existing work emphasizes the importance of network

architecture for performance, our findings indicate that inductive biases may hold greater importance.

Transfer Learning. We devise a TL experiment to investigate the ability of all approaches to adapt to changing environments. We define two running penalty functions  $f_i = |u|^{1+\gamma_i}$  for  $i \in \{0, 1\}$ , where  $\gamma_0 = 1.3$  and  $\gamma_1 = 1$ . We consider agents who use a Gaussian Process (GP)  $\hat{f}$  as a predictive model for the running penalty; see Appendix G for details on GPs. First, the agents fit two Gaussian Process  $\hat{f}_i$  for  $i \in \{0, 1\}$  to ten noisy, random samples of the running penalty  $f_i$ . Next, we use DARE, DGM-MLP, and DGM-LSTM to solve for solutions  $V^{\theta_0}, u^{\psi_0}$  relative to  $\widehat{f}_0$ . Once all methods have converged, we change the agents' estimate of the running penalty to  $\hat{f}_1$  and re-train  $V^{\theta_0}, u^{\psi_0}$ with this updated penalty function. We record the loss in the adaptive phase in Figure 3(b).

All methods learn the new policy with comparable precision after a few thousands iterations, and we report training performance in Appendix D. However, DARE clearly transfers knowledge to the new environment more efficiently, taking less than 20 ADAM steps to achieve satisfactory precision. Each iteration lasts 0.00446 seconds on average in our experiments so DARE is suited for online problems with near continuous observations in nonstationary environments.

### 6.2. Online Performance: Filtering

To test the performance of DARE in the online phase, we devise an adaptive OC problem in the LOG setup. We assume that the true drift of the system (15) is b = -5, but the agent uses a misspecified prior  $b_0 = 5$ . Throughout the period [0, T], the agent learns b through observations of  $X_t$ .

We compare our method to classical stochastic filtering. This approach is only suited to handle uncertainty in the drift, so our experiment assumes known running and terminal cost functions. The agent observes the state  $X_t$  of the system 1000 times throughout the period [0, T], and we fix model parameters as in Table 1. We compare the following methodologies to solve the adaptive OC problem:

- oracle: the agent knows the true drift *b*. Standard results show that the optimal control is obtained analytically;
see Appendix E.

-misspecified: the agent uses a misspecified prior b<sub>0</sub>,
does not update the drift estimate, and computes the optimal
control analytically as in Appendix E.

**-filtering**: the agent assumes the drift is a random variable  $\mu$  drawn from a Gaussian prior  $\mathcal{N}(b_0, \Pi_0)$  where  $\Pi_0 = 3$  and uses Bayesian learning to update the parameters of  $\mu$ . We solve this problem rigorously in Appendix E. The optimal adaptive strategy is obtained analytically in (28).

- **DARE:** the value and control function networks are initialized as in (8) and trained in the offline phase using the misspecified drift  $b_0$ . In the online phase, the agent observes  $X_t$  and uses an exponential moving average with smoothing  $\lambda = 0.95$  to estimates the drift  $b_t$ . After each update, we use 10 ADAM steps to update the optimal policy, i.e., the
- 347 value and control functions  $V^{\theta}(t, x; b_t), u^{\psi}(t, x; b_t).^4$

348 - A2C: Let  $u^{\psi}(t,x;b) = \mathfrak{X}^{\psi}(t,x,b)$ . The agent uses the 349 drift estimation as a state variable to learn the solution to 350 (15). More precisely, to train the algorithm offline, we use 351 training data with drifts sampled from the prior distribution 352  $\mathcal{N}(b_0, \Pi_0)$ , where  $\Pi_0 = 3$ , and we use the same drift esti-353 mator as that in DARE. In the online phase, the agent does 354 not update  $\mathfrak{X}^{\psi}$ . See Appendix H for more details on the 355 A2C implementation. 356

357

358

359

360 Figure 3(c) shows the distribution of the control policy and 361 the estimated drift for 100 sample paths generated with the 362 true drift b. The misspecified agent is not adaptive 363 and the filtering agent suffers from misspecification 364  $(b_0 \ll b^* \text{ and } \Pi_0 \text{ is small})$ . a2c learns the oracle policy 365 after a few iterations, however, the algorithm's performance 366 degrades over time, see Appendix H for an in-depth dis-367 cussion. On average, the adaptive optimal policy of DARE 368 adapts quickly and remains close to the oracle policy 369 throughout the online phase. Thus, our method is suffi-370 ciently flexible and robust to misspecification. 371

372 Finally, to test robustness with respect to the true drift, we 373 run 100 simulations in which the value of the true drift 374 is drawn from a distribution  $b \sim \mathcal{N}(5,3)$ . We run the 375 different algorithms described above to solve the adaptive 376 OC problem for each simulated value of b. Table 3 shows the mean and standard deviation of the performance of each 378 algorithm and showcases the superior performance of DARE. 379 It is key to note that while A2C and other RL approaches 380 need to train on (realistic) simulations of the environment, 381 DARE adapts to new environments without any pre-training.

### 6.3. Online Performance: nonlinear MPC with GPs

Noiseless Cost Observations. Here, we test the performance of DARE for an MPC problem using GPs to approximate the nonlinear running penalty function. The true running penalty function is  $u \mapsto |u|^{1+\gamma^*}$  with  $\gamma^* = 1$  and the agent's prior is  $\gamma_0 = 1.3$ . In the online phase, the agent receives noiseless samples of the true penalty function evaluated at the agents' control; that is, the agent observes  $|u^{\psi}(t, X_t)|^{1+\gamma^*}$ . We compare the following methods:

- **oracle**: the agent knows the true functional form of the running penalty  $|u|^{1+\gamma^*}$  and solves (5) using the offline solver of DARE to obtain the optimal policy.

-misspecified: the agent uses the prior  $\gamma_0$  and solves (5) using DARE to obtain the optimal policy.

- DARE: the agent fits a GP to the prior  $|u|^{1+\gamma_0}$  and uses DARE (8) with the mean prediction of the GP to solve the offline problem. In the online phase, the agent receives noiseless observations  $|u^{\psi}(t, X_t)|^{1+\gamma^*}$  at 300 evenly spaced times in [0, T], and uses a fixed lookback window of 15 points to update the GP estimation.<sup>5</sup> We set the exploration parameter  $\varphi = 0$  because the observations are noiseless. At any time  $t \in \mathcal{T}$ , the agent updates the optimal policy with 30 ADAM steps.<sup>6</sup>

We test each method on 100 sample paths of the system (15). Figure 4(a) shows the distribution of the system  $X_t$  and the policy  $u_t$  throughout time. On average, DARE adapts the policy from the misspecified model of the environment to the true one quickly.

**Exploration-Exploitation.** We consider the case when the agent's observations of the running penalty in the online problem are corrupted by noise. That is, the agent observes  $|u^{\psi}(t, X_t)|^{1+\gamma^*} + \epsilon_t$  for  $\epsilon_t \sim \mathcal{N}(0, .02)$ . In this setting, it is beneficial for the agent to explore to ensure they have an accurate model of the running penalty function. To showcase the effect of exploration on performance, we test DARE with different values of the exploration parameter  $\varphi$ . Recall that  $\varphi > 0$  penalizes exploration while  $\varphi < 0$  rewards it.

We run 100 simulations and compare an agent that rewards exploration to an agent who is indifferent to exploration. Figure 4(b) and Table 3 show that in the presence of noise, adding an exploration term in the objective significantly improves the overall performance. In particular, the agent learns the true policy faster by encouraging exploration. Often, the absence of exploration in noisy environments leads to local optima in the value function and control policy network parameters, because a (wrong) mean prediction

 <sup>&</sup>lt;sup>4</sup>In our simulations, each update iteration is performed, on average, in 0.00446 seconds; see Appendix D.

<sup>&</sup>lt;sup>5</sup>More precisely, the agent uses (at most) 15 points from the set of all observations gathered throughout [0, t) for the GP prior.

 $<sup>^{6}</sup>$ In our simulations, each update iteration is performed in 0.0024 seconds on average.



386

387

388

389

390

395

396

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

423

424

425

426 427

428 429

430

431

432

433

434

435

436

437

438

439

(a) Mean and std dev of policy for oracle, misspecified, and DARE.



(b) Mean and std dev of policy for oracle, misspecified, and DARE when  $\varphi = 0$  (no exploration), and when  $\varphi = 5 \cdot 10^{-3}$  (exploration).



(c) Mean and std dev of policy for DARE when the true value of  $\gamma$  jumps between 1.3 and 1.

Figure 4. Performance of DARE in the online phase for the MPC problem.

leads to a specific policy which prevents accurate learning of the cost function in the whole domain of controls.

**Non-Stationary Environment.** Finally, we consider a simulation setup where the true form of the cost function randomly switches between that of  $\gamma_1^* = 1.3$  and  $\gamma_2^* = 1$  according to a Poisson process with intensity 0.005, i.e., with 1.5 switches, on average, per simulation. We consider an environment which starts with the cost functional  $\gamma_1^* = 1.3$ , and the observations of the running penalty  $|u^{\psi}(t, X_t)|^{1+\gamma^*} + \epsilon_t$  are corrupted with noise  $\epsilon_t \sim \mathcal{N}(0, .1)$ . Similar to the previous experiment, the agent uses a GP to model the running penalty.

413 To illustrate how DARE adapts to noisy and non-stationary 414 environments, we draw and fix a Poisson path and run 100 415 simulations for the three methods described above. Fig-416 ure 4(c) shows the distribution of the control policy u and 417 illustrates the robustness of DARE to unpredictably chang-418 ing environments. In particular, the policy followed by our 419 methodology is, on average, close to the optimal one. We re-420 port the performance of DARE in Table 3 when the Poisson 421 path is not fixed throughout simulations. 422

*Table 3.* Distribution of the final performance (mean, std dev) computed as  $X_T - \alpha X_T^2 - \phi \int_0^T u_t^2 dt$  for each simulation path.

| Setup      | Algorithm                                           | Performance                                                                                              |
|------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| filtering  | oracle                                              | (-4.07, 6.55)                                                                                            |
|            | DARE<br>a2c<br>misspecified<br>filtering            | $\begin{array}{c} (-4.16, 6.44) \\ (-4.20, 6.21) \\ (-5.95, \textbf{5.60}) \\ (-9.81, 5.78) \end{array}$ |
| zero-noise | oracle                                              | (-8.82, 0.94)                                                                                            |
|            | misspecified<br>DARE                                | (-8.83, 0.94)<br>(-8.91, 0.94)                                                                           |
| noise      | oracle                                              | (-8.83, 0.93)                                                                                            |
|            | misspecified<br>DARE (no explor.)<br>DARE (explor.) | $\begin{array}{c}(-8.91,0.93)\\(-8.86,0.93)\\(-8.83,0.92)\end{array}$                                    |

### 6.4. High-Dimensional Control

In recent years, regulators have urged financial institutions to manage the risk of their trading activity within very large portfolios called central risk books. The aggregated trading activity of large institutions is often conducted at very high frequency and can be modeled as an OC problem. The controlled system is described by the agent's inventory  $Q_t \in \mathbb{R}^d$ , the asset prices  $S_t \in \mathbb{R}^d$ , and running wealth  $X_t \in \mathbb{R}$ , with dynamics:

$$\mathrm{d}Q_t = u_t \,\mathrm{d}t \,,\,\mathrm{d}S_t = \tilde{\Sigma} \,\mathrm{d}W_t \,,\,\mathrm{d}X_t = -u_t^\mathsf{T} S_t \,\mathrm{d}t - f(u_t) \,\mathrm{d}t \,,$$

where  $u_t \in \mathbb{R}^d$  denotes the trader's speed of trading. The agent incurs transaction costs according to some unknown function of the trading speed  $f(u_t) \in \mathbb{R}^d$ , and maximizes the exponential utility of their terminal wealth for some estimate  $\hat{f}$  of the true transaction costs (See Appendix F for a detailed motivation for this problem):

$$\sup_{v} \mathbb{E} \left[ -\exp\left(-\gamma \left(X_{T} + Q_{T}^{\mathsf{T}} S_{T} - Q_{T}^{\mathsf{T}} \Gamma Q_{T}\right)\right) \right]$$

The left panel of Figure 5 shows the training performance of the three methods DARE, DGM-LSTM, and DGM-MLP in the offline phase, when f corresponds to  $f : u \mapsto u^{\gamma \intercal} \eta u^{\gamma}$  where  $\gamma = 1.3$ . The last two panels of Figure 5 show the transfer strength when the exponent changes to  $\gamma = 1$  and the agent must adapt their optimal policy. The results showcase the superior performance of DARE in the offline and online phases.

## **Impact Statement**

This paper presents a novel deep learning methodology for solving decision-making problems in noisy and nonstationary environments, with wide-ranging applications in finance, robotics, and biology. Our contribution is a highly accurate and efficient method for solving model predictive control problems. Possible implications include more efficient and effective risk management in finance, safer robot-human interaction, and improved biomedical engineering. We use tractable examples to test our approach and to demonstrate that our model produces reasonable policies.



Figure 5. Training loss (9) of DARE, DGM-MLP, and DGM-LSTM, in the offline and online phase averaged through 100 training tasks for a 10-dimensional trading problem. Model parameters are  $\Gamma = 10^{-2} I_{10}$ ,  $\eta = 10^{-1} I_{10}$ ,  $\gamma = 10^{-2}$ , and  $\Sigma$  is a random positive semi-definite matrix.

Before implementing our model for critical problems, we believe further specific experimentation and validation is necessary.

## References

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464 465

466

467

468

469 470

471

472

473

474 475

476

477

478

479

480

481

482

483

484

485

486

487

488

- Al-Aradi, A., Correia, A., Jardim, G., de Freitas Naiff, D., and Saporito, Y. Extensions of the deep galerkin method. *Applied Mathematics and Computation*, 430: 127287, 2022.
- Allgower, F., Findeisen, R., Nagy, Z. K., et al. Nonlinear model predictive control: From theory to application. *Journal-Chinese Institute Of Chemical Engineers*, 35(3): 299–316, 2004.
- Aristotelous, A. C., Mitchell, E. C., and Maroulas, V. Adlgm: An efficient adaptive sampling deep learning galerkin method. *Journal of Computational Physics*, 477: 111944, 2023.
- Bachouch, A., Huré, C., Langrené, N., and Pham, H. Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications. *Methodology and Computing in Applied Probability*, 24(1):143– 178, 2022.
- Basei, M., Guo, X., Hu, A., and Zhang, Y. Logarithmic regret for episodic continuous-time linear-quadratic reinforcement learning over a finite-time horizon. *The Journal of Machine Learning Research*, 23(1):8015–8048, 2022.
- Bensoussan, A. Perturbation methods in optimal control. (*No Title*), 1988.
- Bieker, K., Peitz, S., Brunton, S. L., Kutz, J. N., and Dellnitz, M. Deep model predictive flow control with limited sensor data and online learning. *Theoretical and computational fluid dynamics*, 34:577–591, 2020.

- Cartea, Á., Jaimungal, S., and Penalva, J. *Algorithmic and high-frequency trading*. Cambridge University Press, 2015.
- Doya, K. Reinforcement learning in continuous time and space. *Neural computation*, 12(1):219–245, 2000.
- Drissi, F. Solvability of differential riccati equations and applications to algorithmic trading with signals. *Applied Mathematical Finance*, 29(6):457–493, 2022. doi: 10. 1080/1350486X.2023.2241130. URL https://doi.org/10.1080/1350486X.2023.2241130.
- Duran-Martin, G., Kara, A., and Murphy, K. Efficient online bayesian inference for neural bandits. In *International Conference on Artificial Intelligence and Statistics*, pp. 6002–6021. PMLR, 2022.
- Garcia, C. E., Prett, D. M., and Morari, M. Model predictive control: Theory and practice—a survey. *Automatica*, 25 (3):335–348, 1989.
- Han, J., Jentzen, A., and E, W. Solving high-dimensional partial differential equations using deep learning. *Proceedings of the National Academy of Sciences*, 115(34): 8505–8510, 2018.
- Hoglund, M., Ferrucci, E., Hernandez, C., Gonzalez, A. M., Salvi, C., Sanchez-Betancourt, L., and Zhang, Y. A neural rde approach for continuous-time non-markovian stochastic control problems, 2023.
- Huré, C., Pham, H., Bachouch, A., and Langrené, N. Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis. *SIAM Journal on Numerical Analysis*, 59(1):525–557, 2021.
- Iglesias, P. A. and Ingalls, B. P. *Control theory and systems biology*. MIT press, 2010.
- Jia, Y. and Zhou, X. Y. Policy gradient and actor-critic learning in continuous time and space: Theory and algorithms. *The Journal of Machine Learning Research*, 23 (1):12603–12652, 2022.
- Jia, Y. and Zhou, X. Y. q-learning in continuous time. *Journal of Machine Learning Research*, 24(161):1–61, 2023.
- Jiang, D., Sirignano, J., and Cohen, S. N. Global convergence of deep galerkin and pinns methods for solving partial differential equations. *arXiv preprint arXiv:2305.06000*, 2023.
- Kunisch, K. and Walter, D. Semiglobal optimal feedback stabilization of autonomous systems via deep neural network approximation. *ESAIM: Control, Optimisation and Calculus of Variations*, 27:16, 2021.

| 495<br>496<br>497<br>498                      | Lenz, I., Knepper, R. A., and Saxena, A. Deepmpc: Learn-<br>ing deep latent features for model predictive control. In<br><i>Robotics: Science and Systems</i> , volume 10, pp. 25. Rome,<br>Italy, 2015.                                                                                                                                            | <ul> <li>Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., and Ryll, M. Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. <i>IEEE Robotics and</i></li> <li>Automation, Letters, 8(4):2207, 2404, erg. 2022. doi:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 499<br>500<br>501<br>502                      | Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. Continuous control with deep reinforcement learning. <i>arXiv preprint</i> arXiv:1500.02071, 2015                                                                                                                                          | Automation Letters, 8(4):2397–2404, apr 2023. doi:<br>10.1109/lra.2023.3246839. URL https://doi.org/<br>10.1109%2Flra.2023.3246839.<br>Schulman I Wolski F Dhariwal P Radford A and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 503<br>504<br>505<br>506<br>507               | Mesbah, A. Stochastic model predictive control: An overview and perspectives for future research. <i>IEEE Control Systems Magazine</i> , 36(6):30–44, 2016.                                                                                                                                                                                         | <ul> <li>Klimov, O. Proximal policy optimization algorithms.<br/><i>arXiv preprint arXiv:1707.06347</i>, 2017.</li> <li>Sirignano, J. and Spiliopoulos, K. Dgm: A deep learning algorithm for solving partial differential genetical genetical differential genetical gen</li></ul> |
| 508<br>509<br>510<br>511                      | Mhaskar, H. N. Neural networks for optimal approximation of smooth and analytic functions. <i>Neural computation</i> , 8 (1):164–177, 1996.                                                                                                                                                                                                         | <ul> <li>of computational physics, 375:1339–1364, 2018.</li> <li>Suder, P. M., Xu, J., and Dunson, D. B. Bayesian transfer learning. arXiv preprint arXiv:2312.13484, 2023.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 512<br>513<br>514                             | Mishra, P. K., Gasparino, M. V., Velasquez, A. E. B., and<br>Chowdhary, G. Deep model predictive control, 2023.                                                                                                                                                                                                                                     | Sutton, R. S. and Barto, A. G. <i>Reinforcement learning: An introduction</i> . MIT press, 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 515<br>516<br>517<br>518<br>519               | Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,<br>Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing<br>atari with deep reinforcement learning. <i>arXiv preprint</i><br><i>arXiv:1312.5602</i> , 2013.                                                                                                                                   | Tallec, C., Blier, L., and Ollivier, Y. Making deep q-<br>learning methods robust to time discretization. In <i>Interna-</i><br><i>tional Conference on Machine Learning</i> , pp. 6096–6104.<br>PMLR, 2019.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 520<br>521<br>522<br>523<br>524               | Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,<br>T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-<br>chronous methods for deep reinforcement learning. In<br><i>International conference on machine learning</i> , pp. 1928–<br>1937. PMLR, 2016.                                                                                  | Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C.<br>A survey on deep transfer learning. In Artificial Neural<br>Networks and Machine Learning–ICANN 2018: 27th<br>International Conference on Artificial Neural Networks,<br>Rhodes, Greece, October 4-7, 2018, Proceedings, Part III<br>270, 270, 270, 2019.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 525<br>526<br>527<br>528<br>529<br>530<br>531 | <ul> <li>Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S. Neural network dynamics for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE international conference on robotics and automation (ICRA), pp. 7559–7566. IEEE, 2018.</li> <li>Nin, S., Lin, Y., Wang, L. and Sang, H. A dacade surrous.</li> </ul> | <ul> <li>Z7, pp. 270–279. Springer, 2018.</li> <li>Todorov, E. and Li, W. A generalized iterative lqg method for locally-optimal feedback control of constrained non-linear stochastic systems. In <i>Proceedings of the 2005, American Control Conference, 2005.</i>, pp. 300–306. IEEE, 2005.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 532<br>533<br>534<br>535                      | <ul> <li>Onken, D., Nurbekyan, L., Li, X., Fung, S. W., Osher,</li> </ul>                                                                                                                                                                                                                                                                           | van der Meer, R., Oosterlee, C. W., and Borovykh, A. Op-<br>timally weighted loss functions for solving pdes with<br>neural networks. <i>Journal of Computational and Applied</i><br><i>Mathematics</i> 405:113887 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 536<br>537<br>538<br>539<br>540               | S., and Ruthotto, L. A neural network approach for high-dimensional optimal control applied to multiagent path finding. <i>IEEE Transactions on Control Systems Technology</i> , 31(1):235–251, 2022.                                                                                                                                               | <ul> <li>Wang, H., Zariphopoulou, T., and Zhou, X. Y. Reinforcement learning in continuous time and space: A stochastic control approach. <i>The Journal of Machine Learning Research</i> 21(1):8145–8178–2020</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 541<br>542<br>543<br>544                      | <ul> <li>Pan, S. J. and Yang, Q. A survey on transfer learning. <i>IEEE Transactions on knowledge and data engineering</i>, 22(10): 1345–1359, 2009.</li> <li>Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,</li> </ul>                                                                                                                | <ul> <li>Yildiz, C., Heinonen, M., and Lähdesmäki, H. Continuous-<br/>time model-based reinforcement learning. In <i>Interna-</i><br/><i>tional Conference on Machine Learning</i>, pp. 12009–<br/>12018, DML P. 2021.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 545<br>546<br>547<br>548<br>549               | M., and Dormann, N. Stable-baselines3: Reliable rein-<br>forcement learning implementations. <i>Journal of Machine</i><br><i>Learning Research</i> , 22(268):1–8, 2021. URL http:<br>//jmlr.org/papers/v22/20-1364.html.                                                                                                                            | Yong, J. and Zhou, X. Y. <i>Stochastic controls: Hamiltonian</i><br>systems and HJB equations, volume 43. Springer Science<br>& Business Media, 1999.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                               |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

- 550 Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong,
- 551 H., and He, Q. A comprehensive survey on transfer
- 552 learning. *Proceedings of the IEEE*, 109(1):43–76, 2020.

# 605 A. Algorithms

| Algorithm 1 : DARE - Offline Phase                                                                                                                            | Algorithm 2 : DARE - Online Phase                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Inputs:                                                                                                                                                       | Input:                                                                                                                                  |
| • Initial OC pair $\hat{\mathfrak{p}}_0 = (\hat{h}_0, \hat{f}_0)$                                                                                             | • OC pair $\widehat{\mathfrak{p}}_0 = (\widehat{h}_0, \widehat{f}_0)$                                                                   |
| • Weights $\theta_0, \psi_0$                                                                                                                                  | • Initial weights $\theta, \psi$                                                                                                        |
| • Area of integration $K \subset \mathbb{R}$                                                                                                                  | • Area of integration $K \subset \mathbb{R}$                                                                                            |
| • Number of training iterations $N \in \mathbb{N}$                                                                                                            | • Number of ADAM updates in offline step $N_{off} \in \mathbb{N}$                                                                       |
| • Initial state $X_0$                                                                                                                                         | • Number of ADAM updates per online step $N_{on} \in \mathbb{N}$                                                                        |
| $\hat{u}_{\mathbf{x}} \leftarrow \mathrm{ILOG}(X_{0}  \hat{\mathbf{p}}_{0})$                                                                                  | • Time discretization $\mathcal{T} \subset (0,T]$                                                                                       |
| $\begin{array}{cccc} u_{X_0} & & & \Pi \otimes ((X_0, \mathfrak{p}_0)) \\ 17 & & V^{\theta_0} \leftarrow \widehat{a}_0 + \mathfrak{X}^{\theta_0} \end{array}$ | • Initial State $X_0$                                                                                                                   |
| $117 \qquad \psi_0 \leftarrow \widehat{u}_{X_0} + \mathfrak{X}^{\psi_0}$                                                                                      | $V^{\theta_0}, u^{\psi_0} \leftarrow \texttt{DARE}(\widehat{\mathfrak{p}}_0, \theta, \psi, K, N_{off}, X_0)$                            |
| 19 for $n-1$ N do                                                                                                                                             | $t_{prev} \leftarrow 0$                                                                                                                 |
| $\mathcal{D} \leftarrow Batch of uniform samples of [0, T] \times K$                                                                                          | $\widehat{\mathfrak{p}}_{prev} \leftarrow \widehat{\mathfrak{p}}_0$                                                                     |
| $\ell \leftarrow \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \int_{0}^{1} f(t_{i} x_{j} V^{\theta_{0}} u^{\psi_{0}} \hat{\mathbf{p}}_{0})$                      | for $t\in\mathcal{T}$ do                                                                                                                |
| $ \mathcal{D}  \succeq (t,x) \in \mathcal{D} \approx (t,x),  (t,x) \in \mathcal{D} $                                                                          | $X_t \leftarrow \text{System}(t, X_{t_{prev}}, u^{\psi_{t_{prev}}}(t, X_{t_{prev}}))$                                                   |
| $\theta_n, \psi_n \leftarrow \text{ADAM}(\theta_{n-1}, \psi_{n-1}, loss = \ell)$                                                                              | $\hat{\mathbf{n}} \leftarrow \operatorname{Approv}(\hat{\mathbf{n}} - \hat{\mathbf{n}} - (X, u^{\psi} - (t, X_{c})) + c)$               |
| end for                                                                                                                                                       | $\mathbf{p}_t \leftarrow \mathbf{Appion}(\mathbf{p}_{prev}, \mathbf{p}_{prev}(\mathbf{A}_t, a_{t_{prev}}(t, \mathbf{A}_t)) + \epsilon)$ |
| 25                                                                                                                                                            | $- V^{\theta_t}, u^{\psi_t} \leftarrow \text{DARE}(\widehat{\mathfrak{p}}_t, \theta_{t_{prev}}, \psi_{t_{prev}}, t, N_{on})$            |
| 26                                                                                                                                                            | $t_{prev} \leftarrow t$                                                                                                                 |
| 27                                                                                                                                                            | end for                                                                                                                                 |

# B. ILQG

We provide a brief overview of the ILQG method from (Todorov & Li, 2005) that we use to initialize the control policy. Let the system  $X_t$  evolve as:

$$dX_t = h(X_t, u_t)dt + \Sigma(X_t, u_t)dW_t$$

and let the performance criterion be

$$J(t,x;u) = \mathbb{E}\left[g(X_T) + \int_t^T f(\tau, X_\tau, u_\tau) \mathrm{d}\tau\right].$$

In this section, we assume that the agent seeks to *minimize* J(t, x; u). Let  $\overline{u}_t$  be a random *open-loop* control policy, and consider

 $\mathrm{d}\overline{X}_t = f(\overline{X}_t, \overline{u}_t) \,.$ 

646 Next, we linearize the original system around  $\overline{X}_t$ ,  $\overline{u}_t$  and discretize time  $k = \{0, \dots, K\}$  with  $\Delta t = \frac{T}{K-1}$  and  $t_k = k\delta t$ .

648 Define the discrepancies  $\delta X_t = X_t - \overline{X}_t, \delta u_t = u_t - \overline{u}_t$ , which evolve (approximately) as

$$\delta X_{k+1} = A_k \delta X_k + B_k \delta u_k + \mathcal{C}_k (\delta u_k) \xi_k$$
  

$$\mathcal{C}_k = c_{1,k} + C_{1,k} \delta u_k + \dots + C_{d,d_u}$$
  

$$\operatorname{cost}_k = q_k + \delta X_k^{\mathsf{T}} q_k + \frac{1}{2} \delta X_k^{\mathsf{T}} Q_k \delta X_k$$
  

$$+ \delta u_k^{\mathsf{T}} r_k + \frac{1}{2} \delta u_k^{\mathsf{T}} R_k \delta u_k + \delta u_k^{\mathsf{T}} P_k \delta X_k ,$$

657 where  $\delta X_0 = 0, \, \xi_k \sim N(0, I_{d_X}),$ 

$$A_k = I_{d_X} + \Delta t \, h_x \qquad \qquad \mathbf{q}_k = \Delta t \, f_x$$

| 660        | $B_k = \Delta t  h_u$                   | $Q_k = \Delta_t f_{xx}$          |
|------------|-----------------------------------------|----------------------------------|
| 661<br>662 | $c_{i,k} = \sqrt{\Delta t} \Sigma^i$    | $oldsymbol{r}_k = \Delta t  f_u$ |
| 663        | $C_{i,k} = \sqrt{\Delta t}  \Sigma_u^i$ | $R_k = \Delta t f_{uu}$          |
| 664        | $q_k = \Delta t f$                      | $P_k = \Delta t f_{ux}$          |
| 665        | V                                       |                                  |

and  $q_K = g$ ,  $q_K = g_x$ , and  $Q_K = g_{xx}$ .

Above, all functions are evaluated at  $\overline{X}_k, \overline{u}_k$ , and  $\Sigma^i$  denotes the *i*-th row of  $\Sigma$ . It is shown in (Todorov & Li, 2005) that the optimal control to the linearized system  $\delta u^*$  is affine, with

$$\delta u^*(\delta X) = l_k + L_k \,\delta X \,. \tag{18}$$

When  $\delta u$  takes the form (18), the value function is quadratic and we write

$$V_k(\delta X) = s_k + \delta X_k^{\mathsf{T}} \boldsymbol{s}_k + \frac{1}{2} \delta X_k^{\mathsf{T}} S_k \delta X_k$$

On can obtain an explicit representation of  $S_k$ ,  $s_k$ ,  $s_k$  by first defining

# $\boldsymbol{g}_k = \boldsymbol{r}_k + B_k^{\mathsf{T}} \boldsymbol{s}_k + \sum_i C_{i,k}^{\mathsf{T}} S_{k+1} c_{i,k}$

which leads to the following equalities

$$S_k = Q_k + A_k^{\mathsf{T}} S_{k+1} A_k - L_k^{\mathsf{T}} H_k L_k + L_k^{\mathsf{T}} G_k + G_k^{\mathsf{T}} L_k$$
  
 $oldsymbol{s}_k = oldsymbol{q}_k + A_k^{\mathsf{T}} oldsymbol{s}_{k+1} + L_k^{\mathsf{T}} H_k l_k + L_k^{\mathsf{T}} oldsymbol{g}_k + G_k^{\mathsf{T}} l_k$   
 $s_k = oldsymbol{q}_k + s_{k+1} + rac{1}{2} \sum_i c_{i,k} S_{k+1} c_{i,k} + rac{1}{2} l_k^{\mathsf{T}} H_k l_k + l_k^{\mathsf{T}} oldsymbol{g}_k$ 

where  $S_K = Q_K$ ,  $s_K = q_K$ ,  $s_K = q_K$ . Consequently, we obtain

$$l_k = -H_k^{-1} \boldsymbol{g}_k$$
$$L_k = -H_k^{-1} G_k \,.$$

When f or g are not convex, H may have negative eigenvalues. This generally causes numerical issues due to the the minimization problem being unbounded. In this Levenberg-Marquardt method to achieve an approximate inverse, by forcing all negative eigenvalues of Home  $\lambda > 0$ . 

### C. Transfer Learning Neural Networks

### **C.1. Definitions**

First, we introduce the notation used throughout the section. 

**Definition C.1** (Single-Layer Perceptron (SLP)). Denote  $d_i, d_h, d_o \in \mathbb{N}, \sigma : \mathbb{R} \to \mathbb{R}$ . A single-layer perceptron is defined as

 $F: \begin{array}{ccc} \mathbb{R}^{d_i} & \longrightarrow & \mathbb{R}^{d_o} \\ x & \longmapsto & \sum_{i=1}^{d_h} (C^{\intercal})_i \phi \bullet (A_i x + b_i) \end{array}$ 

with 
$$A_i \in \mathbb{R}^{d_i}$$
,  $b_i \in \mathbb{R}$ ,  $(C^{\intercal})_i \in \mathbb{R}^{d_o}$  for  $i \in \{1, \dots, d_h\}$  and  $\bullet$  denotes the component-wise application. We denote with  $\theta := (A, b, C) \in \mathbb{R}^d$  the parameters of this SLP, with  $d = d_i d_h + d_h + d_o d_h$ , and  $F_{\theta}$  is an SLP with parameter  $\theta$ .

 $G_k = P_k + B_k^{\mathsf{T}} S_{k+1} A_k$  $H_k = R_k + B_K^\mathsf{T} B_k + \sum_i C_{i,k}^\mathsf{T} S_{k+1} C_{i,k} \,,$ 

### 715 C.2. Proof of Theorem 5.2

We split the proof of Theorem 5.2 into two results. Proposition C.2 shows that perturbations in the environment lead to perturbations of similar scale in the value function and the optimal policy of OC problems. Next, Proposition C.3 shows that for small perturbations of the value function and optimal policy, the parameters of the networks used to approximate these functions are continuous.

**Proposition C.2.** There is a constant C such that

$$|V^{r}(t,x) - V^{s}(t,x)| \le C \epsilon^{2}, \qquad (19)$$

$$|u^{r,\star} - u^{s,\star}| \le C \epsilon \,. \tag{20}$$

**Proof** First, note that the assumption of Theorem 5.2 ensure that the functional J is well defined. Observe that the OC problem  $V^r$  is a perturbation of  $V^s$  but also  $V^s$  is a perturbation of  $V^r$ . In particular, first write

$$J^{r}(t,x,u) = \mathbb{E}\left[\widehat{g}(X_{T}^{s}) + \int_{t}^{T}\widehat{f}_{s}(X_{\tau}^{s},u_{\tau})\,\mathrm{d}\tau\,\Big|\,X_{t}^{s} = x\right]$$
(21)

$$J^{r}(t,x,u) = \mathbb{E}\left[\widehat{g}(X_{T}^{r}) + \int_{t}^{T}\widehat{f}_{s}(X_{\tau}^{r},u_{\tau})\,\mathrm{d}\tau\,\Big|\,X_{t}^{r} = x\right]\,.$$
(22)

Next, use Theorem 2.1 of Chapter III and Theorem 2.1 of Chapter IV in (Bensoussan, 1988) to write

$$\begin{cases} |V^r(t,x) - J^r(t,x,u^{s,\star})| &\leq C_0 \,\epsilon^2, \\ |V^s(t,x) - J^s(t,x,u^{r,\star})| &\leq C_1 \,\epsilon^2, \end{cases}$$

for suitable constants  $C_0$  and  $C_1$ . Finally, use the asymptotic expansions (Section 2.3, Chapter III, in (Bensoussan, 1988)) to write

$$\begin{cases} |V^r(t,x) - J^s(t,x,u^{s,\star})| &\leq L_0 \epsilon^2 \\ |V^s(t,x) - J^r(t,x,u^{r,\star})| &\leq L_1 \epsilon^2 \end{cases}$$

for suitable constants  $L_0$  and  $L_1$ .

**Proposition C.3.** Let  $K \subseteq \mathbb{R}^{d_i}$  be compact;  $f \in C_b^2(K; \mathbb{R})$ . There exists  $\delta, L > 0$  such that for every  $f' : K \to \mathbb{R}^{d_o}$  with  $||f - f'|| < \delta$  and every  $\gamma > 0$ , there exists parameters  $\theta, \theta' \in \mathbb{R}^d$  such that

$$\|F_{\theta} - f\|_{C^2_b(K;\mathbb{R})} \le \gamma,\tag{23}$$

$$\|F_{\theta'} - f'\|_{C^2_t(K;\mathbb{R})} \le \gamma,$$
 (24)

and

$$\|\theta' - \theta\| < L\|f - f'\|_{C^2_t(K;\mathbb{R})},$$
(25)

where  $F_{\theta}$  is a single-layer perceptron with ReLU activation of width  $d_{\rm h}$ .

**Proof** Without loss of generality, assume that K includes an open set around 0, i.e. there exists  $0 < \delta < \epsilon$  s.t.  $\mathcal{D}^{\delta} - f \subseteq C_b^2(K; \mathbb{R})$ , where

$$\mathcal{D}^{\delta} := \left\{ f' \in C_b^2(K; \mathbb{R}) \middle| \|f - f'\|_{C_b^2(K; \mathbb{R})} < \delta \right\}.$$

Fix an arbitrary  $\gamma > 0$ . According to (Mhaskar, 1996), Theorem 2.1, we can find a hidden dimension  $d_{\rm h} \in \mathbb{N}$ , a matrix  $A \in \mathbb{R}^{d_{\rm h} \times d_{\rm i}}$ , a vector  $b \in \mathbb{R}^{d_{\rm h}}$ , and a continuous linear functional  $\mathcal{C} : C_b^2(K; \mathbb{R}) \to \mathbb{R}^{d_{\rm h}}$  such that

$$\|f' - F_{(A,b,\mathcal{C}(f'))}\|_p \le \gamma, \quad f \in \mathcal{D}^{\delta}$$

Since for  $f' \in \mathcal{D}^{\delta}$  holds

$$F_{(A,b,\mathcal{C}(f'))} = F_{(A,b,\mathcal{C}(f'-f))} + F_{(A,b,\mathcal{C}(f))}$$

due to linearity of C and Definition C.1, we have

$$\|\theta' - \theta\| = \|\mathcal{C}(f' - f)\| \le L\|f - f'\|_{C^2_b(K;\mathbb{R})}$$

where we used the fact that the operator norm  $\|C\|_T$  of a continuous operator is finite. We conclude  $\|\theta' - \theta\| < \epsilon$  and finish the proof.

| Section                  | Test                                                                          | Algorithm                   | Run time in seconds per 1000 iteration |
|--------------------------|-------------------------------------------------------------------------------|-----------------------------|----------------------------------------|
| 6.1 Training performance | Offline LQG (Figure 3(a))                                                     | DGM-LSTM<br>DGM-MLP<br>DARE | $4.26 \\ 1.95 \\ 2.24$                 |
|                          | Offline MPC (Figure 3(a))                                                     | DGM-LSTM<br>DGM-MLP<br>DARE | 6.02<br>2.28<br>2.34                   |
|                          | Transfer Learning (Figure 3(b))                                               | DGM-LSTM<br>DGM-MLP<br>DARE | 7.84<br>3.90<br>4.46                   |
| 6.2 Filtering            | Online phase (Figure 3)                                                       | DARE                        | 7.47                                   |
| 6.3 MPC                  | No noise (Figure 4(a))<br>Noise (Figure 4(b))<br>Non-stationary (Figure 4(c)) | DARE<br>DARE<br>DARE        | 2.40<br>2.46<br>2.52                   |
| 6.4 High-dimensional     | Offline phase (Figure 5)                                                      | DGM-LSTM<br>DGM-MLP<br>DARE | $6.01 \\ 2.41 \\ 4.01$                 |
|                          | Online phase (Figure 5)                                                       | DGM-LSTM<br>DGM-MLP<br>DARE | $6.64 \\ 3.26 \\ 3.92$                 |

Table 4. Run time of different algorithms in the experiments.

# D. Performance

We report training performance of all the methods tested in Section 6 in Table 4. All tests have been conducted on a standard MacBook Pro M1. We make our code public in the following (anonymized) repo: https://anonymous.4open. science/r/dare-7136/README.md

## **E.** Filtering mathematics

## E.1. Perfect knowledge of the drift

This section solves the OC problem (16) when the agent fixed the value of the drift and does not update their belief throughout the time window.

When the drift is known and fixed, the OC problem (16) can be solved with standard methods (Yong & Zhou, 1999), and is

$$u^{\star} = \frac{c}{2\phi} \left( 2A(t) x + B(t) + 1 \right) , \qquad (26)$$

where A and B solve the ODE system

$$\begin{cases} -A'(t) = \frac{c A(t)^2}{2\phi} \\ -B'(t) = 2 \mu A(t) + \frac{c^2 A(t) (B(t)+1)}{\phi}. \end{cases}$$
(27)

### 816 E.2. Bayesian filtering of the Gaussian drift

This section solves the OC problem when the agent uses a Gaussian prior to continuously update their estimation of the drift throughout the time window of the OC problem.

Consider the control problem in (16). When the agent uses a Gaussian prior  $\mathcal{N}(b_t, \Pi_0)$  for  $\mu$  then it can be shown that the dynamics of x can be written

$$dx_t = \beta_t \, \mathrm{d}t + c \, u_t \, \mathrm{d}t + \sigma \, d\widehat{W}_t$$

in a different filtration in which  $\widehat{W}$  is a Gaussian process.  $\beta_t = \mathbb{E}[\mu|\mathcal{F}_t]$  is the best estimate of  $\mu$  at time t and can be obtained analytically as  $\beta_t = -\frac{\Pi\left(t\right)}{\sigma} \left(x_0 - \frac{\sigma b_0}{\Pi_0} - x_t + q_t\right)$ 

where  $\Pi(t) = (\Pi_0^{-1} + \frac{t}{\sigma})^{-1}$  and  $q_t = \int_0^t c \, u_t \, dt$ .

Using the learning dynamics above to solve the control problem (see (Drissi, 2022) for details) gives the optimal control  $\tilde{u}^{\star}$ given by 

$$\tilde{u}^{\star} = \frac{c}{2\phi} \left( 2A(t) + B(t) \right) x + \left( 2C(t) + B(t) \right) q$$
(28)

$$+(1+D(t)+E(t)),$$
 (29)

where A, B, C solve the Riccati equation in

$$P(t) = \begin{pmatrix} A(t) & \frac{1}{2}B(t) \\ \frac{1}{2}B(t)^{\mathsf{T}} & C(t) \end{pmatrix}$$
$$0 = P'(t) + Y(t)^{\mathsf{T}} P(t) + P(t) Y(t) + P(t) UP(t) ,$$
$$Y(t) = \begin{pmatrix} \frac{\Pi(t)}{\sigma} & \frac{\Pi(t)}{\sigma} \\ 0 & 0 \end{pmatrix}, \quad U = \begin{pmatrix} \frac{c^2}{\phi} & \frac{c^2}{\phi} \\ \frac{c^2}{\phi} & \frac{c^2}{\phi} \end{pmatrix},$$
$$P(T) = \begin{pmatrix} -\alpha & 0 \\ 0 & 0 \end{pmatrix},$$

and D and E solve the ODE system

with terminal conditions D(T) = E(T) = 0.

# F. Algorithmic trading in high dimension

We motivate the multidimensional setup in our experiments of Section 6.4. Consider the case of the trading desk of a large bank that must execute a number  $d \in \mathbb{N}^*$  of large transactions in d correlated financial assets throughout a trading window [0, T]. The trading desk must minimize their trading costs while minimizing the risk of their positions. Throughout this section, we consider a filtered probability space  $(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]})$ , with T > 0, satisfying the usual conditions and supporting all the processes we introduce. 

Let  $Q_0 \in \mathbb{R}^d$  represent the transaction sizes in every asset. The inventory of the agent is modeled by  $(Q_t)_{t \in [0,T]} =$  $(Q_t^1, \dots, Q_t^d)_{t \in [0,T]}^{\mathsf{T}}$  and it evolves with the trading speed  $(u_t)_{t \in [0,T]} = (u_t^1, \dots, u_t^d)_{t \in [0,T]}^{\mathsf{T}}$  in each asset.<sup>7</sup>

$$dQ_t = u_t \,\mathrm{d}t.$$

The prices  $(S_t)_{t \in [0,T]} = (S_t^1, \dots, S_t^d)_{t \in [0,T]}^{\mathsf{T}}$  of the *d* assets are modeled as correlated Brownians with dynamics

$$dS_t = \tilde{\Sigma} \, \mathrm{d}W_t$$

where  $W = (W^1, \dots, W^d)$  is a *d*-dimensional standard Brownian motion and  $S_0 \in \mathbb{R}^d$  is known. The matrix  $\tilde{\Sigma} \in \mathcal{M}_d(\mathbb{R})$ measures the correlation of the prices and we define the covariance matrix  $\Sigma = \tilde{\Sigma} \tilde{\Sigma}^{\mathsf{T}} \in S_d^{++}(\mathbb{R}).^8$ 

<sup>&</sup>lt;sup>7</sup>The superscript  $^{\mathsf{T}}$  is the transpose operator.

 ${}^{8}\mathcal{M}_{d}(\mathbb{R}) := \mathcal{M}_{d,d}(\mathbb{R})$  is the set of  $d \times d$  real square matrices,  $\mathcal{S}_{d}(\mathbb{R})$  is the set of real symmetric  $d \times d$  matrices, and  $\mathcal{S}_{d}^{++}(\mathbb{R})$  is the set of positive matrices. 

Trading activity of the agent generates transaction costs, driven by some function of the trading speed  $f(u_t)$  so the cash from their trading activity evolves as 

$$\mathrm{d}X_t = -u_t^\mathsf{T} S_t \,\mathrm{d}t - f(u_t) \,\mathrm{d}t, \quad X_0 = 0.$$

The agent maximizes the exponential utility of their terminal wealth so their objective is 

$$V(t, x, q, s) = \sup_{v} \mathbb{E} \left[ -\exp\left(-\gamma \left(Q_T^{\mathsf{T}} S_T - Q_T^{\mathsf{T}} \Gamma Q_T\right)\right) \right]$$
(30)

$$-\int_{t}^{T} u_{s}^{\mathsf{T}} S_{s} \,\mathrm{d}s - \int_{t}^{T} f(u_{s}) \,\mathrm{d}s \Big) \Big) \bigg], \tag{31}$$

for values  $Q_t = q$ ,  $X_t = x$ , and  $S_t = s$  at time t. 

The dynamic programming principle holds and the HJB equation associated with the problem

$$0 = \partial_t V + \frac{1}{2} \operatorname{Tr} \left( \Sigma D_{SS}^2 V \right) + \sup_{u \in \mathbb{R}^d} \left( -(u^{\mathsf{T}} s + f(u)) \partial_x V + v^{\mathsf{T}} \nabla_q V \right),$$
(32)

with terminal condition

$$V(T, x, q, s) = -\exp\left(-\gamma \left(q^{\mathsf{T}}s - q^{\mathsf{T}}\Gamma q\right)\right).$$
(33)

In the experiment of Section 6.4, we solve the HJB (32)-(33) using DARE to obtain the optimal policy of the trading agent. When all the parameters of the problem are known and fixed, i.e., the agent does not adapt to new information, the problem described above admits an analytical solution which we use to study the performance of DARE.

To solve the problem semi-analytically, the function f must be a quadratic form, that is, there is some  $\eta \in S_d^{++}(\mathbb{R}^{d \times d})$  with

$$f(u) = u^{\mathsf{T}} \eta \, u \,. \tag{34}$$

We follow the standard steps in linear-exponential quadratic Gaussian (LEQG) control and we propose the following form for the value function

$$V(t, x, q, s) = -\exp\left(-\gamma \left(x + q^{\mathsf{T}}S + Q^{\mathsf{T}}A(t)q + B(t)^{\mathsf{T}}q + C(t)\right)\right),$$

and straightforward calculations find that the problem reduces to solving the following ODE system

$$\begin{cases} A'(t) = \frac{\gamma}{2}\Sigma - A(t)\eta^{-1}A(t) \\ B'(t) = -A(t)\eta^{-1}B(t) \\ C'(t) = -\frac{1}{4}B(t)^{\mathsf{T}}\eta^{-1}B(t), \end{cases}$$
(35)

with terminal conditions

$$A(T) = -\Gamma, \quad B(T) = C(T) = 0.$$
 (36)

(37)

Clearly, the solutions for B and C are B = C = 0. To obtain a solution, we use the change of variables 

$$a(t) = \eta^{-\frac{1}{2}} A(t) \eta^{-\frac{1}{2}} \quad \forall t \in [0, T],$$

so the problem reduces to the following terminal value problem 

- $\begin{cases} a'(t) = \hat{A}^2 - a(t)^2 \\ a(T) = -C, \end{cases}$

where

and 

 $\hat{A} = \sqrt{\frac{\gamma}{2}} \left( \eta^{-\frac{1}{2}} \Sigma \eta^{-\frac{1}{2}} \right)^{\frac{1}{2}} \in \mathcal{S}_d^{++}(\mathbb{R}),$  $C = \eta^{-\frac{1}{2}} \Gamma \eta^{-\frac{1}{2}} \in \mathcal{S}_d^+(\mathbb{R}) \,.$ 

We solve (37) in the next result.

**Proposition F.1.** Define  $\xi : [0,T] \to \mathcal{S}_d(\mathbb{R})$ 

$$\xi(t) = -\frac{\hat{A}^{-1}}{2} \left( I - e^{-2\hat{A}(T-t)} \right)$$

$$-e^{-\hat{A}(T-t)} \left( C + \hat{A} \right)^{-1} e^{-\hat{A}(T-t)}$$
(38)

as the unique solution to the ODE system

$$\begin{cases} \xi'(t) = \hat{A}\xi(t) + \xi(t)\hat{A} + I_d \\ \xi(T) = -\left(C + \hat{A}\right)^{-1}. \end{cases}$$
(39)

Then  $\forall t \in [0, T]$ ,  $\xi(t)$  is invertible and

 $a: t \in [0,T] \to \hat{A} + \xi(t)^{-1} \in \mathcal{S}_d(\mathbb{R})$ 

is the unique solution of (37).

Thus, the value function, which we use as the oracle in Section 6.4 is given by

$$\begin{split} V(t, x, q, s) &= \\ &- \exp\left(-\gamma \left(x + q^\mathsf{T} S + Q^\mathsf{T} A(t) q + B(t)^\mathsf{T} q + C(t)\right)\right), \end{split}$$

where

$$\begin{aligned} A(t) &= \eta^{\frac{1}{2}} \left( \hat{A} - \left\{ \frac{\hat{A}^{-1}}{2} \left( I - e^{-2\hat{A}(T-t)} \right) \right. \\ &+ e^{-\hat{A}(T-t)} \left( C + \hat{A} \right)^{-1} e^{-\hat{A}(T-t)} \right\}^{-1} \right) \eta^{\frac{1}{2}}. \end{aligned}$$

Finally, Figure F shows the true value function and the solution learned by DARE for a set of model parameters in dimension 5, and Figure 6 shows the associated training loss.

# **G.** Gaussian Process mathematics

Formally, a GP is a random function  $f : \mathcal{X} \mapsto \mathbb{R}$ , such that, for any finite set of points  $\mathbf{X}_{\star} \subseteq \mathcal{X}$ , the random vector  $f_{\star} = \{f(x)\}_{x \in \mathbf{X}_{\star}}$  follows a multivariate Gaussian distribution. The shape of the function f is determined by a finite set of (training) observations  $\boldsymbol{y} = \{y_i\}_{i \in \{1,...,n\}}$  collected at the (training) observation points  $\mathbf{X} = \{\mathbf{x}_i\}_{i \in \{1,...,n\}}$ , where  $y_i = f(\mathbf{x}_i) + \epsilon_i$  is subject to i.i.d. Gaussian measurement noise  $\epsilon_i \sim \mathcal{N}(0, s^2)$  for s > 0. GPs are fully specified by a mean function  $\mu : \mathcal{X} \mapsto \mathbb{R}$  and a covariance (kernel) function  $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ , In particular, if  $f \sim \mathcal{GP}(\mu, k)$  and  $\mathbf{X}_{\star}$  is a set of test points in the domain  $\mathcal{X}$  of the GP, then the set of random variables  $f_{\star}$  is Gaussian with parameters  $\mathcal{N}(\mu_{\star}, K_{\star,\star})$ , where 

$$\boldsymbol{\mu}_{\star} = \left\{ \mu(\boldsymbol{x}) \right\}_{\boldsymbol{x} \in \mathbf{X}_{\star}} \quad \text{and} \quad \boldsymbol{K}_{\star,\star} = \left\{ k\left(\boldsymbol{x},\boldsymbol{x}'\right) \right\}_{\left(\boldsymbol{x},\boldsymbol{x}'\right) \in \mathbf{X}_{\star}}$$

A convenient property of GPs is that one computes the posterior distribution with analytic formulae. Suppose we collect nnoisy observations  $\boldsymbol{y} = \{y_1, \dots, y_n\}$  at the domain points  $\mathbf{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_n\}$ , where  $y_i = f(\boldsymbol{x}_i) + \epsilon_i$  and  $\epsilon_i \sim \mathcal{N}(0, s^2)$ . 



 $k_{\theta}$ . The vector of hyper-parameters  $\theta$  and the variance  $s^2$  maximize the quantity (41), i.e.,  $(\theta^*, s^*) \in \underset{\theta \in \Theta, s \in \mathbb{R}^+}{\arg \max} L(\theta, s)$ , which one solves with classical gradient descent-based optimization algorithms.



Figure 7. True and approximated (with DARE) value function (30) for  $t \in [0, T]$  and  $\mathbf{X} = X_1, X_2, X_3, X_4, X_5 \in [-5, 5]^5$ . Each surface corresponds to the value function for time and one dimension in X, where the value of the system in all other dimensions is fixed to 1067  $x_i = 0$ .



Figure 8. Two GPs fitted to  $f(u) = u^{1+\gamma_i}$  for  $\gamma_0 = 1.3$  and  $\gamma_1 = 1$ .

1089

1091

1079

1082 1083 1084

1068 1069

# 1088 H. Reinforcement Learning Benchmarks

1090 This section discusses the use of A2C as a benchmark for reinforcement learning in Section 6.2.

### 1092 H.1. The A2C benchmark in Section 6.2

We use the implementation of A2C in (Mnih et al., 2016) from StableBaselines3 (Raffin et al., 2021). We use default parameters except for the number of steps necessary to update the policy, which we modify to account for the high stochasticity in the decision-making task. We found it is beneficial to process 10 episodes or more before updating. With this, it becomes clear that the time discretization played an important role in the performance of A2C, which is supported by the findings in (Tallec et al., 2019). For this reason, we use a standard technique for RL in continuous-time environments to augment performance, which is that during training, we hold the actions of the A2C agent constant for *n* time steps. At 1100 test time, the agent is allowed to act at all time steps. According to Appendix H.1, the performance of A2C only becomes 1101 competitive when actions in training are held constant for 100 time steps, that is, the agent makes only 10 actions in Figure 1102 3.



Figure 9. A2C performances in the setting of Section 6.2 for varying action repetitions, with performance estimation error.

In the LQG example, competitive performance is achieved likely due to the true optimal control being affine, so that linear
 interpolation between sparsely sampled optimal actions can lead to a decent approximation. In examples where the control
 is nonlinear, a finer time discretization is likely needed to approximate the true optimal control well.

In our experimental setup of Section 6.2, we also evaluated the PPO algorithm from StableBaselines3 (Raffin et al., 2021) as summarized in Table 5. While the algorithm demonstrated satisfactory performance, we observed several limitations impacting its suitability for our specific task. Firstly, PPO exhibited less stability compared to other baselines, with a noticeable sensitivity to hyperparameter configurations. This characteristic necessitated a more meticulous and often trial-and-error approach to hyperparameter tuning, which was less efficient in our context. Additionally, we encountered a fundamental challenge with the PPO algorithm similar to that experienced with the A2C approach, pertaining to the breakdown of reinforcement learning strategies in continuous time environments. To mitigate this, we were compelled to adopt a strategy of repeating actions, analogous to our approach with A2C. 

Table 5. Performance of PPO in Section 6.2 for various hyper parameters.

| MINI BATCH      | 512   | 256   | 256   | 100   | 64    |
|-----------------|-------|-------|-------|-------|-------|
| STEP P. UPDATE  | 8192  | 8192  | 8192  | 1000  | 2048  |
| NUM. EPOCH      | 100   | 10    | 100   | 10    | 10    |
| ACT. REPIT.     | 100   | 100   | 10    | 100   | 10    |
| PERF. (MEAN)    | -4.22 | -4.68 | -5.46 | -4.35 | -6.61 |
| PERF. (STD DEV) | 5.48  | 5.27  | 4.97  | 5.51  | 6.38  |

### 1146 H.2. Function-valued uncertainty

In Section 6.3, our decision to exclude an RL benchmark was informed by the fact that we use a GP to model uncertainty. In
Section 6.2, uncertainty about the drift was parametric and could be incorporated as a state variable for the RL agent. Hence,
the RL agent could be trained on samples of different drifts and learn the optimal policy for all drifts in the sampled region.
In Section 6.3, the GP estimate could not be incorporated directly as a state variable for the RL agent, because the GP is a
non-parametric function approximator. Tailoring an RL algorithm to optimize over a set of non-parametric cost functions
was out of the scope of this paper.